Venue: Online
Class timings: Tuesday and Friday from 4:00 to 5:30 PM
First meeting: 4th September 2020

Course description:

  • Recap of Fundamentals of thermodynamics, Probability, distributions (single and multi variables), Conditional probability, moments, cumulants, moment generating functions, central limit theorems
  • Foundations of equilibrium statistical mechanics -- Liouville’s equation, microstate, macrostate, phase space, typicality ideas, (Little on irreversible evolution of macrostate), Kac ring, equal a priori probability, ensembles as tools in statistical mechanics.
  • Partition functions, connection to thermodynamical free energies, Response functions
  • Examples: Non-interacting systems -- Classical ideal gas, Harmonic oscillator, paramagnetism, adsorption, 2 level systems, molecules, more non-standard examples.
  • Formulation of quantum statistical mechanics -- Quantum microstates, Quantum macro-states, density matrix.
  • Quantum statistical mechanical systems -- Dilute polyatomic gases, Vibrations of solid, Black body radiation
  • Quantum ideal gases -- Hilbert space of identical particles -- Fermi gas, Pauli paramagnetism -- Bose gas, BEC -- Revisit phonons, photons -- Landau diamagnetism -- Integer partitions -- Condensation phenomena in real space
  • Basic discussions on large deviation principles in classical statistical mechanics.
  • Introduction to simulation methods
  • Interacting classical gas -- Virial expansions -- Cumulant expansions -- Liquid state physics -- Van-der Waals equation


  • M. Kardar, Statistical Physics of Particles
  • R. K. Pathria, Statistical mechanics
  • K. Huang, Statistical mechanics
  • J. M. Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity
  • M. Kardar, Statistical Physics of fields
  • Landau & Lifshitz, Statistical mechanics
  • + some other books and papers, references of which will be provided in the class.

Assignment: 50%
Class test: 10%
End semester exam: 40%