Venue: Emmy Noether Seminar Room

Class Timings: 4:00 PM to 5:30 PM, Tuesdays and Thursdays

First Meeting: 24 January 2023

Course Description: 

1.    General theory for Open Quantum systems
2.    Exactly solvable / quantum integrable systems
3.    Damped Quantum Harmonic Oscillator and multi-level systems
4.    Non-Hermitian Random Matrix Theory and Quantum Chaos
5.    Driven-Dissipative Quantum Systems and applications
6.    Matrix Product States for open quantum systems

References: 

1. Howard Carmichael, Statistical Methods in Quantum Optics 1. Master Equations and Fokker-Planck Equations (Springer)
2. Girish S. Agarwal, Quantum Optics (Cambridge University Press)
3. Heinz-Peter Breuer and Francesco Petruccione, The theory of open quantum systems (Oxford University Press)
4. Marlan O. Scully and M. Suhail Zubairy, Quantum optics (Cambridge University Press)
5. Fritz Haake, Sven Gnutzmann, Marek Kuś, Quantum signatures of chaos (Springer)
6. Simulation methods for open quantum many-body systems, Hendrik Weimer, Augustine Kshetrimayum, and Román Orús, Rev. Mod. Phys. 93, 015008  (2021)

Prerequisites: Quantum Mechanics, Statistical Physics

Evaluation: 40% Homework, 30% Term paper (report and presentation), 30% Final Exam