

Computational Methods for Quantum Many-Body Physics

Sthitadhi Roy^1 and $\operatorname{Arnab} \operatorname{Sen}^2$

¹ICTS-TIFR, Bengaluru ²IACS, Kolkata

- Class timings: Wednesdays 15:00-17:00
- Venue: Emmy Noether seminar room and online
- Zoom details:
 - Meeting ID: 876 3397 1378
 - Passcode: 171723
- Evaluation: Assignments (will be posted on the Moodle page)
- Contacts:
 - Sthitadhi Roy [sthitadhi.roy@icts.res.in]
 - Arnab Sen [tpars@iacs.res.in]
 - All course material (slides, lecture notes, video recordings, and assignments) can be found at https://courses.icts.res.in/course/view.php?id=82

- obvious, introduce some the most commonly used numerical methods in many-body physics
- · introduce how and why the methods work? understanding the algorithms behind methods
- · how to extract useful and interesting physics from the numerical methods
- understand the physics behind the algorithms: If and how the algorithms work also encodes a lot of physics of the system under consideration
- At a practical level, lots of very well structured libraries available such as
 - ALPS [https://alpscore.org]
 - QuSpin [http://quspin.github.io/QuSpin/] [SciPost Phys. 2, 003 (2017), SciPost Phys. 7, 020 (2019)]
 - TenPY [https://tenpy.readthedocs.io/en/latest/][SciPost Phys. Lect. Notes 5 (2018)]
 - iTensor [https://itensor.org][SciPost Phys. Codebases 4 (2022)]
 - many many others · · ·

Help understand how do the underlying algorithms in these packages so that they are no longer black boxes

Course Plan

Lectures 1-3: Exact diagonalisation

- representing Hamiltonians as sparse matrices
- Lanczos algorithms for diagonalisation
- Shift-invert and Polynomially filtered exact diagonalisation
- time-evolution using ED

• Lectures 4-7: Classical and Quantum Monte Carlo:

- Basic principles of Monte Carlo algorithms: importance sampling, detailed balance, autocorrelation timescales, error analysis
- Illustrating classical Monte Carlo using the 2D Ising model: local, worm and cluster type algorithms
- Some other useful tricks: parallel tempering, overrelaxation etc
- Illustrating quantum Monte Carlo (QMC) using the 2D S = 1/2 Heisenberg antiferromagnet and the 2D J-Q model: Stochastic series expansion (SSE) QMC and its implementation
- Introduction to sign problem (time permitting)

• Lecture 8: Time-evolution of quantum systems

- (truncated) Krylov space methods
- Kernel polynomial methods

Lectures 9-10: Tensor Network Methods

- matrix product states
- matrix product operators
- introduction to DMRG and tDMRG algorithms (time permitting)

Models: typically disordered, interacting quantum many-body Hamiltonians defined on regular, hierarchical or random lattices

Spin models

$$H = \sum_{\langle i,j \rangle} \sum_{\mu,\nu=\mathbf{x},\mathbf{y},\mathbf{z}} J^{\mu\nu}_{ij} \hat{S}^{\mu}_{i} \hat{S}^{\nu}_{j} + \sum_{i} \sum_{\mu=\mathbf{x},\mathbf{y},\mathbf{z}} h^{\mu}_{i} \hat{S}^{\mu}_{i}$$

• Fermi-Hubbard type models

$$H = -t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + \sum_{i,\sigma} \epsilon_{i,\sigma} c^{\dagger}_{i\sigma} c_{i\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Bose-Hubbard type models

$$H = -t \sum_{\langle i,j \rangle} b_i^{\dagger} b_j + \sum_i \epsilon_{i,\sigma} b_i^{\dagger} b_i + \sum_{i,j} V_{ij} n_i n_j$$

 many more: Bose-Fermi mixtures, t – J models, electrons coupled to phonons, open quantum systems ...

- Eigenvalue spectrum
 - analysis of the gap across quantum phase transition
 - spectral correlations: ergodic, chaotic or integrable, localised
 - density of states, zero modes
- Correlation functions in ground states/eigenstates
 - correlation lengths: diverges across transition, long-range order
 - order parameters; scaling across QPTs
 - entanglement structure in the states
- Thermodynamic properties
 - partition functions and thermodynamic potentials
 - response functions, specific heat, susceptibilities
- Non-equilibrium dynamics
 - dynamical response, structure factors
 - non-equilibrium transport
 - quantum chaos or lack thereof

Schmitt et al., Sci. Adv. 2022; Sandvik's lecture note, Karrash et al. PRB 2014

Exact Diagonalisation

1. Construct and enumerate the basis states

- label the sites of your lattice
- enumerate the basis states \Rightarrow assign an unique integer label to each basis state
- pick out the subset of basis states allowed by symmetries/conservation laws

2. Construct the Hamiltonian as a matrix

- identify the diagonal elements of the Hamiltonian \Rightarrow these just associate numbers to each basis state
- identify the off-diagonal terms in the Hamiltonian \Rightarrow for each term identify the set of basis states every basis state is connected to under the action of the term
- 3. Diagonalise the Hamiltonian \Rightarrow extract the required eigenvalues and eigenvectors

4. Compute observabes

- express the operators of interest as matrices in the constructed basis
- expectation values as matrix-vector multiplications

Single particle hopping on some random lattice

$$H=-t\sum_{\langle ij
angle}c_{i}^{\dagger}c_{j}+\sum_{i}\epsilon_{i}c_{i}^{\dagger}c_{i}$$

- real-space basis a natural choice
- $|2\rangle = [0,0,1,0,0,0]^\mathsf{T}$ is a basis state localised on site 2 of the lattice
- onsite potentials $\{\epsilon_i\}$ form the diagonal elements
- hopping between sites connected by lines constitute the off-diagonal elements

$$H = \begin{pmatrix} \epsilon_0 & 1 & 1 & 0 & 1 & 0 \\ 1 & \epsilon_1 & 1 & 0 & 0 & 1 \\ 1 & 1 & \epsilon_2 & 1 & 0 & 0 \\ 0 & 0 & 1 & \epsilon_3 & 1 & 1 \\ 1 & 0 & 0 & 1 & \epsilon_4 & 1 \\ 0 & 1 & 0 & 1 & 1 & \epsilon_5. \end{pmatrix}$$

Interacting spin Hamiltonian on a 1D chain

$$H = J \sum_{i=0}^{L-1} [\sigma_i^{x} \sigma_{i+1}^{x} + \sigma_i^{y} \sigma_{i+1}^{y} + \sigma_i^{z} \sigma_{i+1}^{z}] + \sum_i h_i \sigma_i^{z}$$

- Computational basis: classical configurations of σ^z -product states
- Enumeration of the basis states: spin-configurations \rightarrow binary strings \rightarrow integers

Configuration	String	Integer
$\uparrow \uparrow \uparrow \uparrow$	0000	0
$\uparrow \uparrow \uparrow \downarrow$	0001	1
$\uparrow\uparrow\downarrow\uparrow$	0010	2
$\uparrow \uparrow \downarrow \downarrow$	0011	3
$\uparrow \downarrow \uparrow \uparrow$	0100	4
:	:	:
•	•	•
$\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$	1111	15

Convert binary string $\{b_{l-1}, \dots, b_{l}, b_{0}\}$ to	Qu
an integer <i>I</i> :	7//

$$I = \sum_{i=0}^{L-1} b_i 2^i$$

Quotient	Binary
7//2 = 3	1
3//2 = 1	1
1//2 = 0	1
0//2 = 0	0

Convert integer to / to binary string

 at each step divide I/2: remainder forms the binary digit and update I to the quotient
 I↑ · · · ↑↓↓↓⟩

ED of an interacting spin-1/2 system: construction of Hamiltonian

- Identify the diagonal and off-diagonal components of the Hamiltonian in the computational basis

$$H_{\text{diag}} = J \sum_{i=0}^{L-1} [\sigma_i^z \sigma_{i+1}^z] + \sum_i h_i \sigma_i^z$$

$$H_{\text{off-diag}} = J \sum_{i=0}^{L-1} [\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y] = J \sum_{i=0}^{L-1} [\sigma_i^+ \sigma_{i+1}^- + \sigma_i^- \sigma_{i+1}^+]$$

Diagonal part:

• Take state $|l\rangle = \{b_{L-1}^{(l)}, \cdots, b_{1}^{(l)}, b_{0}^{(l)}\}$

1 1

Diagonal element H_{II} = E_I: the energy of the classical configuration

$$\mathcal{E}_{l} = J \sum_{i} (-1)^{b_{i}^{(l)} + b_{i}^{(l)}} + \sum_{i} h_{i} (-1)^{b_{i}^{(l)}}$$

Off-diagonal part:

- spin-flips, connect different spin configurations
- for each state $|{\it I}\rangle,$ locate the states $|{\it K}\rangle$ for which $\langle {\it K}|{\it H}|{\it I}\rangle \neq 0$
- H_{off-diag} flips nearest-neighbour anti-parallel spins
- for a given state $|I\rangle$, go to each site i

$$\mathsf{XOR}(b_i^{(l)}, b_{i+1}^{(l)}) = \begin{cases} 1; & \text{if antiparallel} \\ 0; & \text{if parallel} \end{cases}$$

if anti-parallel generate a new state

$$\{\cdots b_{i+1}^{(l)}b_i^{(l)}\cdots\} \Rightarrow \{\cdots b_i^{(l)}b_{i+1}^{(l)}\cdots\}$$

- generate the decimal representation of new binary string $\equiv {\cal K}$ and set ${\cal H}_{I{\cal K}}={\cal J}$

ED of an interacting spin-1/2 system: What does the Hamiltonian look like?

Hamiltonian:

$$H = J \sum_{i=0}^{L-1} [\sigma_i^{x} \sigma_{i+1}^{x} + \sigma_i^{y} \sigma_{i+1}^{y} + \sigma_i^{z} \sigma_{i+1}^{z}] + \sum_i h_i \sigma_i^{z}$$

Plot of Hamiltonian matrix for L = 6

Conservation laws/Symmetries

• Total z-magnetisation $S^z = \sum_i \sigma_i^z$ is a conserved quantity:

$$[H,S^z]=0$$

- Reorder the basis states to group them according to their S^z
- Hamiltonian becomes block diagonal
- Each block can be diagonalised separately

Hamiltonian in block diagonal form

Why do we want to do this?

- Often, interested in problems with a fixed magnetisation, total particle number etc.
- If we do not treat each block separately, we can get spurious errors due to accidental near degenracies of
 eigenvalues, eigenstates mixed between different sectors
- Constructing the full matrix and slicing off the sector of interest is redundant
- Wastage of computational resources; can make the difference between being able and not being able to simulate beyond certain sizes

Comes at a cost

• We need to work a bit harder to efficiently enumerate the basis with symmetries

Consider the sector with $S^z = 0$

Table of configurations and their decimal represetnations						
Configuration	1	J(I)	Configuration	1	J(I)	
000111	7	0	100011	35	10	
001011	11	1	100101	37	11	
001101	13	2	100110	38	12	
001110	14	3	101001	41	13	
010011	19	4	101010	42	14	
010101	21	5	101100	44	15	
010110	24	6	110001	49	16	
011001	25	7	110010	50	17	
011010	26	8	110100	52	18	
011100	28	9	111000	56	19	

Enumerating the basis

- brute force way is to assign indices in increasing order of the decimal representations of the binary strings
- makes it very inefficient:
 - for every decimal *I*, we have to search through the entire (sorted) list to find the appropriate *J*(*I*)
- two of the possible ways around
 - hashing functions
 - Lin tables Lin, PRB 1990

Hashing functions

- associate the index of the basis state to the decimal representation of the binray string

Example:

 $h(l) = [l(mod)\lambda] + 1$

Table of configurations and their decimal representations

Configuration	1	J(I)	h(1)	Configuration	1	J(I)	h(I)
000111	7	0	8	100011	35	10	13
001011	11	1	12	100101	37	11	15
001101	13	2	14	100110	38	12	16
001110	14	3	15	101001	41	13	19
010011	19	4	20	101010	42	14	20
010101	21	5	22	101100	44	15	22
010110	24	6	2	110001	49	16	4
011001	25	7	3	110010	50	17	5
011010	26	8	4	110100	52	18	7
011100	28	9	6	111000	56	19	11

Hashing functions

- associate the index of the basis state to the decimal representation of the binray string

Example:

 $h(l) = [l(mod)\lambda] + 1$

Table of configurations and their decimal representations

Configuration	1	J(1)	h(I)	Configuration	1	J(I)	h(1)
000111	7	0	8	100011	35	10	13
001011	11	1	12	100101	37	11	15
001101	13	2	14	100110	38	12	16
001110	14	3	15	101001	41	13	19
010011	19	4	20	101010	42	14	20
010101	21	5	22	101100	44	15	22
010110	24	6	2	110001	49	16	4
011001	25	7	3	110010	50	17	5
011010	26	8	4	110100	52	18	7
011100	28	9	6	111000	56	19	11

A general issue with hashing functions

- collisions: non-unique hashing values
- very difficult to avoid collisions

- basic idea is to not have a large 1D search
- split the lattice into two parts, A and B, and convert the search for the indices into a 2D search
- Define two integers, one for each part

$$I_A = \sum_{i=0}^{L/2-1} b_i^{(I)} 2^i \qquad I_B = \sum_{i=0}^{L/2-1} b_{i+L/2}^{(I)} 2^i$$

• Define two vectors $J_A(I_A)$ and $J_B(I_B)$ so that the position of the configuration represented by integer I is given by

$$J = J_A(I_A) + J_B(I_B)$$

• maximum length of J_A and J_B is the square root of length of J(I)

			· ·			
Configuration A	I_a	$J_a(I_a)$	Configuration B	I_b	$J_b(I_b)$	$J = J_a + J_b$
1 1 1	7	1	0 0 0	0	0	1
0 1 1	3	1	001	1	1	2
101	5	2	0 0 1	1	1	3
1 1 0	6	3	0 0 1	1	1	4
0 1 1	3	1	010	2	4	5
101	5	2	010	2	4	6
1 1 0	6	3	010	2	4	7
0 1 1	3	1	100	4	7	8
101	5	2	100	4	7	9
1 1 0	6	3	100	4	7	10
0 0 1	1	1	0 1 1	3	10	11
010	2	2	0 1 1	3	10	12
100	4	3	0 1 1	3	10	13
0 0 1	1	1	101	5	13	14
010	2	2	101	5	13	15
1 0 0	4	3	1 0 1	5	13	16
0 0 1	1	1	1 1 0	6	16	17
010	2	2	1 1 0	6	16	18
100	4	3	1 1 0	6	16	19
0 0 0	0	1	1 1 1	7	19	20

ED of an interacting spin-1/2 system: Lin Tables Lin PRB 1990