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Logistical details

= Class timings: Wednesdays 15:00-17:00

= Venue: Emmy Noether seminar room and online
= Zoom details:
= Meeting ID: 876 3397 1378
= Passcode: 171723
= Evaluation: Assignments (will be posted on the Moodle page)
= Contacts:
= Sthitadhi Roy [sthitadhi.roy@icts.res.in]
= Arnab Sen [tpars@iacs.res.in]
= All course material (slides, lecture notes, video recordings, and assignments) can be found at
https://courses.icts.res.in/course/view.php?id=82



Purpose of this course

= obvious, introduce some the most commonly used numerical methods in many-body physics
= introduce how and why the methods work? understanding the algorithms behind methods
= how to extract useful and interesting physics from the numerical methods
= understand the physics behind the algorithms: If and how the algorithms work also encodes a lot of
physics of the system under consideration
= At a practical level, lots of very well structured libraries available such as
= ALPS [https://alpscore.org]
= QuSpin [http://quspin.github.io/QuSpin/] [SciPost Phys. 2, 003 (2017), SciPost Phys. 7, 020 (2019)]
= TenPY [https://tenpy.readthedocs.io/en/latest/][SciPost Phys. Lect. Notes 5 (2018)]

= iTensor [https://itensor.org][SciPost Phys. Codebases 4 (2022)]
= many many others - - -

Help understand how do the underlying algorithms in these packages so that they are no longer black boxes



Course Plan

= Lectures 1-3: Exact diagonalisation

representing Hamiltonians as sparse matrices

Lanczos algorithms for diagonalisation

Shift-invert and Polynomially filtered exact diagonalisation
time-evolution using ED

= Lectures 4-7: Classical and Quantum Monte Carlo:

Basic principles of Monte Carlo algorithms: importance sampling, detailed balance, autocorrelation timescales, error
analysis

lllustrating classical Monte Carlo using the 2D Ising model: local, worm and cluster type algorithms

Some other useful tricks: parallel tempering, overrelaxation etc

Illustrating quantum Monte Carlo (QMC) using the 2D S = 1/2 Heisenberg antiferromagnet and the 2D J-Q model:
Stochastic series expansion (SSE) QMC and its implementation

Introduction to sign problem (time permitting)

= Lecture 8: Time-evolution of quantum systems

(truncated) Krylov space methods
Kernel polynomial methods

Lectures 9-10: Tensor Network Methods

matrix product states
matrix product operators
introduction to DMRG and tDMRG algorithms (time permitting)



Overview of the physics

Models: typically disordered, interacting quantum many-body Hamiltonians defined on regular, hierarchical or

random lattices
= Spin models
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= Fermi-Hubbard type models
H=—t Z C;r(,Cja + Zei,ac;racia + UZ ni iy
(ij) o i,o i
= Bose-Hubbard type models

H= —tz bjbj + Z E,',o-b;-rb,' + Z V,-jn,-nj
ij
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= many more: Bose-Fermi mixtures, t — J models, electrons
coupled to phonons, open quantum systems ...



Overview of the Physics

= Eigenvalue spectrum

= analysis of the gap across quantum phase transition ! P
5 e

= spectral correlations: ergodic, chaotic or integrable, localised s —10 20 095
= density of states, zero modes

=0)
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Gap/gap(y

= Correlation functions in ground states/eigenstates

= correlation lengths: diverges across transition, long-range order
= order parameters; scaling across QPTs
= entanglement structure in the states

= Thermodynamic properties

= partition functions and thermodynamic potentials sos
= response functions, specific heat, susceptibilities ©oeen T

=05
energy density

= Non-equilibrium dynamics

= dynamical response, structure factors
= non-equilibrium transport
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= quantum chaos or lack thereof

Schmitt et al., Sci. Adv. 2022; Sandvik's lecture note, Karrash et al. PRB 2014



Exact Diagonalisation



Basic structure of an ED code

1. Construct and enumerate the basis states
= label the sites of your lattice
= enumerate the basis states = assign an unique integer label to each basis state
= pick out the subset of basis states allowed by symmetries/conservation laws

2. Construct the Hamiltonian as a matrix

= identify the diagonal elements of the Hamiltonian = these just associate numbers to each basis state
= identify the off-diagonal terms in the Hamiltonian = for each term identify the set of basis states every basis state is
connected to under the action of the term

3. Diagonalise the Hamiltonian = extract the required eigenvalues and eigenvectors

4. Compute observabes

= express the operators of interest as matrices in the constructed basis
= expectation values as matrix-vector multiplications



Simplest ED problem

—
Single particle hopping on some random lattice \ /

H=—t ch—l—Ze,—ch
(i) i
= real-space basis a natural choice

= [2) =[0,0,1,0,0,0]" is a basis state localised on site 2 of the

lattice
) ) ) e 1 1 0 1 0
= onsite potentials {¢;} form the diagonal elements 1 ¢ 1 0 0 1
= hopping between sites connected by lines constitute the H 1 1 & 1 0 0
off-diagonal elements T l0 0 1 e 1 1
1 0 O 1 e 1
0 1 0 1 1 e



ED of an interacting spin-1/2 system: construction of basis

= Interacting spin Hamiltonian on a 1D chain

L—1

— X X Y Y z_z z
H= JZ[O‘,-O'erl +ofol, +ofof] —i—Zh,-a,—
i=0 i

= Computational basis: classical configurations of o?-product states
= Enumeration of the basis states: spin-configurations — binary strings — integers

Configuration  String  Integer Quotient  Binary

= Convert binary string {b;_1,---, b1, b} to

i 0000 0 an integer I: 7//2=3 1
M 0001 1 3//2=1 1
M 0010 2 = 1//2=0 1
T o011 3 =2 b2 0//2=0 0
Nt 0100 4 -

: . = Convert integer to [ to binary string |7) = [0---0111)

: ) = at each step divide //2: remainder forms the
AR 1111 15 binary digit and update / to the quotient = [Tt



ED of an interacting spin-1/2 system: construction of Hamiltonian

= |dentify the diagonal and off-diagonal components of the Hamiltonian in the computational basis

L—1
Hdiag = JZ[O’,ZG'ZJ] + Z h,‘O'I-Z Hoff_diag = JZ[G’ O'H_l + O' 0',+1 = Jz 0’ 0’,+1 + CT 0'I+1]
i=0 i = =0
Diagonal part: Off-diagonal part:
« Take state |/) = {b(L/) oo bg’) b(()l)} = spin-flips, connect different spin configurations

= Diagonal element Hy = & the energy = for each state |/), locate the states |K) for which (K|H|l) # 0

of the classical configuration = Hofr.diag flips nearest-neighbour anti-parallel spins

(N pD ()
= U3 (1P 4 S m(—1)b
i i

= for a given state |/), go to each site /

1; if antiparallel

XOR(B", b0 ) =
( 1) 0; if parallel

= if anti-parallel generate a new state
) )
Y N LA R

= generate the decimal representation of new binary string = K
and set Hyi = J




ED of an interacting spin-1/2 system: What does the Hamiltonian look like?

Hamiltonian:
L—1
_ y_y
H= JZ[U?J,ﬁl +ojo) +ofofq]+ Z hio}
i=0 i
Plot of Hamiltonian matrix for L = 6

Conservation laws/Symmetries Hamiltonian in block diagonal form
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ED of an interacting spin-1/2 system: Construct basis with symmetries

Why do we want to do this?

= Often, interested in problems with a fixed magnetisation, total particle number etc.

= |f we do not treat each block separately, we can get spurious errors due to accidental near degenracies of
eigenvalues, eigenstates mixed between different sectors

= Constructing the full matrix and slicing off the sector of interest is redundant

= Wastage of computational resources; can make the difference between being able and not being able to
simulate beyond certain sizes

Comes at a cost

= We need to work a bit harder to efficiently enumerate the basis with symmetries



ED of an interacting spin-1/2 system: construction of basis with symmetries

Consider the sector with 5% =

Table of configurations and their decimal represetnations Enumerating the basis

Configuration I J) Configuration I J() « brute force way is to assign indices in
000111 7 0 100011 35 10 increasing order of the decimal
001011 11 1 100101 3r 11 representations of the binary strings
001101 13 2 100110 38 12 = makes it very inefficient:
001110 14 3 101001 41 13 = for every decimal /, we have to search
010011 19 4 101010 42 14 through the entire (sorted) list to find
010101 21 5 101100 44 15 the appropriate J(/)
010110 24 6 110001 49 16 = two of the possible ways around
011001 25 7 110010 50 17 = hashing functions
011010 26 8 110100 52 18 = Lin tables Lin, PRB 1990
011100 28 9 111000 56 19



ED of an interacting spin-1/2 system: construction of basis with symmetries

Hashing functions

= associate the index of the basis state to the decimal representation of the binray string

= Example:
h(l) = [I(mod)A] + 1

Table of configurations and their decimal represetnations

Configuration I Ji)  h(D) Configuration I J)  h(h)
000111 7 0 8 100011 35 10 13
001011 11 1 12 100101 37 11 15
001101 13 2 14 100110 38 12 16
001110 14 3 15 101001 41 13 19
010011 19 4 20 101010 42 14 20
010101 21 5 22 101100 44 15 22
010110 24 6 2 110001 49 16 4
011001 25 7 3 110010 50 17 5
011010 26 8 4 110100 52 18 7
011100 28 9 6 111000 56 19 11



ED of an interacting spin-1/2 system: construction of basis with symmetries

Hashing functions

= associate the index of the basis state to the decimal representation of the binray string

= Example:
h(l) = [I(mod)A] + 1

Table of configurations and their decimal represetnations

Configuration I J(y k() Configuration I J(y k()
000111 7 0 8 100011 3 10 13 o~ (IR (TR D el
001011 1 1 12 100101 37 11 15 Lusifons
001101 13 2 14 100110 38 12 16 = collisions: non-unique
001110 14 3 15 101001 41 13 19 hashing values
010011 19 4 20 101010 42 14 20 = very difficult to avoid
010101 21 5 22 101100 44 15 22 callfefens
010110 24 6 2 110001 49 16 4
011001 % 7 3 110010 50 17 5
011010 26 8 4 110100 52 18 7
011100 28 9 6 111000 56 19 11



ED of an interacting spin-1/2 system: Lin Tables

= basic idea is to not have a large 1D search
= split the lattice into two parts, A and B, and convert the search for the indices into a 2D search

= Define two integers, one for each part

L/2—1 L/2—1
=3 B2 is= 3 b2
=0 i=0

= Define two vectors Ja(l4) and Jg(Ig) so that the position of the configuration represented by integer / is
given by
J= JA(IA) —+ JB(IB)

= maximum length of Js and Jg is the square root of length of J(/)
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