Computational Methods for Quantum Many-Body Physics

Sthitadhi Roy ${ }^{1}$ and Arnab Sen ${ }^{2}$
${ }^{1}$ ICTS-TIFR, Bengaluru
${ }^{2}$ IACS, Kolkata

Logistical details

- Class timings: Wednesdays 15:00-17:00
- Venue: Emmy Noether seminar room and online
- Zoom details:
- Meeting ID: 87633971378
- Passcode: 171723
- Evaluation: Assignments (will be posted on the Moodle page)
- Contacts:
- Sthitadhi Roy [sthitadhi.roy@icts.res.in]
- Arnab Sen [tpars@iacs.res.in]
- All course material (slides, lecture notes, video recordings, and assignments) can be found at https://courses.icts.res.in/course/view.php?id=82

Purpose of this course

- obvious, introduce some the most commonly used numerical methods in many-body physics
- introduce how and why the methods work? understanding the algorithms behind methods
- how to extract useful and interesting physics from the numerical methods
- understand the physics behind the algorithms: If and how the algorithms work also encodes a lot of physics of the system under consideration
- At a practical level, lots of very well structured libraries available such as
- ALPS [https://alpscore.org]
- QuSpin [http://quspin.github.io/QuSpin/] [SciPost Phys. 2, 003 (2017), SciPost Phys. 7, 020 (2019)]
- TenPY [https://tenpy.readthedocs.io/en/latest/][SciPost Phys. Lect. Notes 5 (2018)]
- iTensor [https://itensor.org][sciPost Phys. Codebases 4 (2022)]
- many many others...

Help understand how do the underlying algorithms in these packages so that they are no longer black boxes

Course Plan

- Lectures 1-3: Exact diagonalisation
- representing Hamiltonians as sparse matrices
- Lanczos algorithms for diagonalisation
- Shift-invert and Polynomially filtered exact diagonalisation
- time-evolution using ED
- Lectures 4-7: Classical and Quantum Monte Carlo:
- Basic principles of Monte Carlo algorithms: importance sampling, detailed balance, autocorrelation timescales, error analysis
- Illustrating classical Monte Carlo using the 2D Ising model: local, worm and cluster type algorithms
- Some other useful tricks: parallel tempering, overrelaxation etc
- Illustrating quantum Monte Carlo (QMC) using the 2D $S=1 / 2$ Heisenberg antiferromagnet and the 2D J-Q model: Stochastic series expansion (SSE) QMC and its implementation
- Introduction to sign problem (time permitting)
- Lecture 8: Time-evolution of quantum systems
- (truncated) Krylov space methods
- Kernel polynomial methods
- Lectures 9-10: Tensor Network Methods
- matrix product states
- matrix product operators
- introduction to DMRG and tDMRG algorithms (time permitting)

Models: typically disordered, interacting quantum many-body Hamiltonians defined on regular, hierarchical or random lattices

- Spin models

$$
H=\sum_{\langle i, j\rangle} \sum_{\mu, \nu=x, y, z} J_{i j}^{\mu \nu} \hat{S}_{i}^{\mu} \hat{S}_{j}^{\nu}+\sum_{i} \sum_{\mu=x, y, z} h_{i}^{\mu} \hat{S}_{i}^{\mu}
$$

- Fermi-Hubbard type models

$$
H=-t \sum_{\langle i, j\rangle, \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}+\sum_{i, \sigma} \epsilon_{i, \sigma} c_{i \sigma}^{\dagger} c_{i \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

- Bose-Hubbard type models

$$
H=-t \sum_{\langle i, j\rangle} b_{i}^{\dagger} b_{j}+\sum_{i} \epsilon_{i, \sigma} b_{i}^{\dagger} b_{i}+\sum_{i, j} V_{i j} n_{i} n_{j}
$$

- many more: Bose-Fermi mixtures, $t-J$ models, electrons coupled to phonons, open quantum systems ...
- Eigenvalue spectrum
- analysis of the gap across quantum phase transition
- spectral correlations: ergodic, chaotic or integrable, localised
- density of states, zero modes
- Correlation functions in ground states/eigenstates
- correlation lengths: diverges across transition, long-range order
- order parameters; scaling across QPTs
- entanglement structure in the states
- Thermodynamic properties
- partition functions and thermodynamic potentials
- response functions, specific heat, susceptibilities
- Non-equilibrium dynamics
- dynamical response, structure factors
- non-equilibrium transport
- quantum chaos or lack thereof

Schmitt et al., Sci. Adv. 2022; Sandvik's lecture note, Karrash et al. PRB 2014

Exact Diagonalisation

1. Construct and enumerate the basis states

- label the sites of your lattice
- enumerate the basis states \Rightarrow assign an unique integer label to each basis state
- pick out the subset of basis states allowed by symmetries/conservation laws

2. Construct the Hamiltonian as a matrix

- identify the diagonal elements of the Hamiltonian \Rightarrow these just associate numbers to each basis state
- identify the off-diagonal terms in the Hamiltonian \Rightarrow for each term identify the set of basis states every basis state is connected to under the action of the term

3. Diagonalise the Hamiltonian \Rightarrow extract the required eigenvalues and eigenvectors
4. Compute observabes

- express the operators of interest as matrices in the constructed basis
- expectation values as matrix-vector multiplications

Single particle hopping on some random lattice

$$
H=-t \sum_{\langle i j\rangle} c_{i}^{\dagger} c_{j}+\sum_{i} \epsilon_{i} c_{i}^{\dagger} c_{i}
$$

- real-space basis a natural choice

- $|2\rangle=[0,0,1,0,0,0]^{\top}$ is a basis state localised on site 2 of the lattice
- onsite potentials $\left\{\epsilon_{i}\right\}$ form the diagonal elements
- hopping between sites connected by lines constitute the off-diagonal elements

$$
H=\left(\begin{array}{cccccc}
\epsilon_{0} & 1 & 1 & 0 & 1 & 0 \\
1 & \epsilon_{1} & 1 & 0 & 0 & 1 \\
1 & 1 & \epsilon_{2} & 1 & 0 & 0 \\
0 & 0 & 1 & \epsilon_{3} & 1 & 1 \\
1 & 0 & 0 & 1 & \epsilon_{4} & 1 \\
0 & 1 & 0 & 1 & 1 & \epsilon_{5} .
\end{array}\right)
$$

- Interacting spin Hamiltonian on a 1D chain

$$
H=J \sum_{i=0}^{L-1}\left[\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\sigma_{i}^{z} \sigma_{i+1}^{z}\right]+\sum_{i} h_{i} \sigma_{i}^{z}
$$

- Computational basis: classical configurations of σ^{2}-product states
- Enumeration of the basis states: spin-configurations \rightarrow binary strings \rightarrow integers

Configuration	String	Integer
$\uparrow \uparrow \uparrow \uparrow$	0000	0
$\uparrow \uparrow \uparrow \downarrow$	0001	1
$\uparrow \uparrow \downarrow \uparrow$	0010	2
$\uparrow \uparrow \downarrow \downarrow$	0011	3
$\uparrow \downarrow \uparrow \uparrow$	0100	4
\vdots	\vdots	\vdots
$\downarrow \downarrow \downarrow \downarrow$	1111	15

- Convert binary string $\left\{b_{L-1}, \cdots, b_{1}, b_{0}\right\}$ to an integer I :

$$
I=\sum_{i=0}^{L-1} b_{i} 2^{i}
$$

Quotient	Binary
$7 / / 2=3$	1
$3 / / 2=1$	1
$1 / / 2=0$	1
$0 / / 2=0$	0

- Convert integer to $/$ to binary string
- at each step divide I/2: remainder forms the binary digit and update $/$ to the quotient

$$
\begin{aligned}
|7\rangle & =|0 \cdots 0111\rangle \\
& =|\uparrow \cdots \uparrow \downarrow \downarrow \downarrow\rangle
\end{aligned}
$$

- Identify the diagonal and off-diagonal components of the Hamiltonian in the computational basis

$$
H_{\mathrm{diag}}=J \sum_{i=0}^{L-1}\left[\sigma_{i}^{z} \sigma_{i+1}^{z}\right]+\sum_{i} h_{i} \sigma_{i}^{z} \quad H_{\text {off-diag }}=J \sum_{i=0}^{L-1}\left[\sigma_{i}^{\chi} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right]=J \sum_{i=0}^{L-1}\left[\sigma_{i}^{+} \sigma_{i+1}^{-}+\sigma_{i}^{-} \sigma_{i+1}^{+}\right]
$$

Diagonal part:

- Take state $|I\rangle=\left\{b_{L-1}^{(I)}, \cdots, b_{1}^{(I)}, b_{0}^{(I)}\right\}$
- Diagonal element $H_{\| I}=\mathcal{E}_{I}$: the energy of the classical configuration

$$
\mathcal{E}_{I}=J \sum_{i}(-1)^{b_{i}^{(l)}+b_{i}^{(l)}}+\sum_{i} h_{i}(-1)^{b_{i}^{(l)}}
$$

Off-diagonal part:

- spin-flips, connect different spin configurations
- for each state $|\Lambda\rangle$, locate the states $|K\rangle$ for which $\langle K| H \mid \Lambda \neq 0$
- $H_{\text {off-diag }}$ flips nearest-neighbour anti-parallel spins
- for a given state $|\Lambda\rangle$, go to each site i

$$
\operatorname{XOR}\left(b_{i}^{(I)}, b_{i+1}^{(I)}\right)= \begin{cases}1 ; & \text { if antiparallel } \\ 0 ; & \text { if parallel }\end{cases}
$$

- if anti-parallel generate a new state

$$
\left\{\cdots b_{i+1}^{(I)} b_{i}^{(I)} \cdots\right\} \Rightarrow\left\{\cdots b_{i}^{(I)} b_{i+1}^{(I)} \cdots\right\}
$$

- generate the decimal representation of new binary string $\equiv K$ and set $H_{I K}=J$

Hamiltonian:

$$
H=J \sum_{i=0}^{L-1}\left[\sigma_{i}^{\times} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\sigma_{i}^{z} \sigma_{i+1}^{z}\right]+\sum_{i} h_{i} \sigma_{i}^{z}
$$

Plot of Hamiltonian matrix for $L=6$

Conservation laws/Symmetries

- Total z-magnetisation $S^{z}=\sum_{i} \sigma_{i}^{z}$ is a conserved quantity:

$$
\left[H, S^{z}\right]=0
$$

- Reorder the basis states to group them according to their S^{z}
- Hamiltonian becomes block diagonal

Hamiltonian in block diagonal form

- Each block can be diagonalised separately

Why do we want to do this?

- Often, interested in problems with a fixed magnetisation, total particle number etc.
- If we do not treat each block separately, we can get spurious errors due to accidental near degenracies of eigenvalues, eigenstates mixed between different sectors
- Constructing the full matrix and slicing off the sector of interest is redundant
- Wastage of computational resources; can make the difference between being able and not being able to simulate beyond certain sizes

Comes at a cost

- We need to work a bit harder to efficiently enumerate the basis with symmetries

Consider the sector with $S^{z}=0$

Table of configurations and their decimal represetnations

Configuration	I	$J(I)$	Configuration	I	$J(I)$
0000111	7	0	100011	35	10
001011	11	1	100101	37	11
001101	13	2	100110	38	12
001110	14	3	101001	41	13
010011	19	4	101010	42	14
010101	21	5	101100	44	15
010110	24	6	110001	49	16
011001	25	7	110010	50	17
011010	26	8	110100	52	18
011100	28	9	111000	56	19

Enumerating the basis

- brute force way is to assign indices in increasing order of the decimal representations of the binary strings
- makes it very inefficient:
- for every decimal I, we have to search through the entire (sorted) list to find the appropriate $J(I)$
- two of the possible ways around
- hashing functions
- Lin tables Lin, PRB 1990

ED of an interacting spin- $1 / 2$ system: construction of basis with symmetries

Hashing functions

- associate the index of the basis state to the decimal representation of the binray string
- Example:

$$
h(I)=[I(\bmod) \lambda]+1
$$

Table of configurations and their decimal represetnations

Configuration	I	$J(I)$	$h(I)$	Configuration	I	$J(I)$	$h(I)$
000111	7	0	8	100011	35	10	13
001011	11	1	12	100101	37	11	15
001101	13	2	14	100110	38	12	16
001110	14	3	15	101001	41	13	19
010011	19	4	20	101010	42	14	20
010101	21	5	22	101100	44	15	22
010110	24	6	2	110001	49	16	4
011001	25	7	3	110010	50	17	5
011010	26	8	4	110100	52	18	7
011100	28	9	6	111000	56	19	11

Hashing functions

- associate the index of the basis state to the decimal representation of the binray string
- Example:

$$
h(I)=[I(\bmod) \lambda]+1
$$

Table of configurations and their decimal represetnations

Configuration	I	$J(I)$	$h(I)$	Configuration	I	$J(I)$	$h(I)$
000111	7	0	8	100011	35	10	13
001011	11	1	12	100101	37	11	15
001101	13	2	14	100110	38	12	16
001110	14	3	15	101001	41	13	19
010011	19	4	20	101010	42	14	20
010101	21	5	22	101100	44	15	22
010110	24	6	2	110001	49	16	4
011001	25	7	3	110010	50	17	5
011010	26	8	4	110100	52	18	7
011100	28	9	6	111000	56	19	11

A general issue with hashing functions

- collisions: non-unique hashing values
- very difficult to avoid collisions
- basic idea is to not have a large 1D search
- split the lattice into two parts, A and B, and convert the search for the indices into a 2D search
- Define two integers, one for each part

$$
I_{A}=\sum_{i=0}^{L / 2-1} b_{i}^{(I)} 2^{i} \quad I_{B}=\sum_{i=0}^{L / 2-1} b_{i+L / 2}^{(I)} 2^{i}
$$

- Define two vectors $J_{A}\left(I_{A}\right)$ and $J_{B}\left(I_{B}\right)$ so that the position of the configuration represented by integer I is given by

$$
J=J_{A}\left(I_{A}\right)+J_{B}\left(I_{B}\right)
$$

- maximum length of J_{A} and J_{B} is the square root of length of $J(I)$

Configuration A	I_{a}	$J_{a}\left(I_{a}\right)$	Configuration B	I_{b}	$J_{b}\left(I_{b}\right)$	$J=J_{a}+J_{b}$
111	7	1	000	0	0	1
011	3	1	001	1	1	2
101	5	2	001	1	1	3
110	6	3	001	1	1	4
011	3	1	010	2	4	5
101	5	2	010	2	4	6
110	6	3	010	2	4	7
011	3	1	100	4	7	8
101	5	2	100	4	7	9
110	6	3	100	4	7	10
001	1	1	011	3	10	11
010	2	2	011	3	10	12
100	4	3	011	3	10	13
001	1	1	101	5	13	14
010	2	2	101	5	13	15
100	4	3	101	5	13	16
001	1	1	110	6	16	17
010	2	2	110	6	16	18
100	4	3	110	6	16	19
000	0	1	111	7	19	20

