
Computational Methods for Quantum Many-Body Physics

Sthitadhi Roy1 and Arnab Sen2

1ICTS-TIFR, Bengaluru
2IACS, Kolkata



Logistical details

• Class timings: Wednesdays 15:00-17:00
• Venue: Emmy Noether seminar room and online
• Zoom details:

• Meeting ID: 876 3397 1378
• Passcode: 171723

• Evaluation: Assignments (will be posted on the Moodle page)
• Contacts:

• Sthitadhi Roy [sthitadhi.roy@icts.res.in]
• Arnab Sen [tpars@iacs.res.in]

• All course material (slides, lecture notes, video recordings, and assignments) can be found at
https://courses.icts.res.in/course/view.php?id=82
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Purpose of this course

• obvious, introduce some the most commonly used numerical methods in many-body physics
• introduce how and why the methods work? understanding the algorithms behind methods
• how to extract useful and interesting physics from the numerical methods
• understand the physics behind the algorithms: If and how the algorithms work also encodes a lot of

physics of the system under consideration
• At a practical level, lots of very well structured libraries available such as

• ALPS [https://alpscore.org]
• QuSpin [http://quspin.github.io/QuSpin/] [SciPost Phys. 2, 003 (2017), SciPost Phys. 7, 020 (2019)]
• TenPY [https://tenpy.readthedocs.io/en/latest/][SciPost Phys. Lect. Notes 5 (2018)]
• iTensor [https://itensor.org][SciPost Phys. Codebases 4 (2022)]
• many many others · · ·

Help understand how do the underlying algorithms in these packages so that they are no longer black boxes
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Course Plan

• Lectures 1-3: Exact diagonalisation
• representing Hamiltonians as sparse matrices
• Lanczos algorithms for diagonalisation
• Shift-invert and Polynomially filtered exact diagonalisation
• time-evolution using ED

• Lectures 4-7: Classical and Quantum Monte Carlo:
• Basic principles of Monte Carlo algorithms: importance sampling, detailed balance, autocorrelation timescales, error

analysis
• Illustrating classical Monte Carlo using the 2D Ising model: local, worm and cluster type algorithms
• Some other useful tricks: parallel tempering, overrelaxation etc
• Illustrating quantum Monte Carlo (QMC) using the 2D S = 1/2 Heisenberg antiferromagnet and the 2D J-Q model:

Stochastic series expansion (SSE) QMC and its implementation
• Introduction to sign problem (time permitting)

• Lecture 8: Time-evolution of quantum systems
• (truncated) Krylov space methods
• Kernel polynomial methods

• Lectures 9-10: Tensor Network Methods
• matrix product states
• matrix product operators
• introduction to DMRG and tDMRG algorithms (time permitting)
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Overview of the physics

Models: typically disordered, interacting quantum many-body Hamiltonians defined on regular, hierarchical or
random lattices

• Spin models

H =
∑
⟨i,j⟩

∑
µ,ν=x,y,z

Jµνij Ŝµ
i Ŝν

j +
∑

i

∑
µ=x,y,z

hµ
i Ŝµ

i

• Fermi-Hubbard type models

H = −t
∑

⟨i,j⟩,σ
c†iσcjσ +

∑
i,σ

ϵi,σc†iσciσ + U
∑

i
ni↑ni↓

• Bose-Hubbard type models

H = −t
∑
⟨i,j⟩

b†
i bj +

∑
i

ϵi,σb†
i bi +

∑
i,j

Vijninj

• many more: Bose-Fermi mixtures, t − J models, electrons
coupled to phonons, open quantum systems ...
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Overview of the Physics

• Eigenvalue spectrum
• analysis of the gap across quantum phase transition
• spectral correlations: ergodic, chaotic or integrable, localised
• density of states, zero modes

• Correlation functions in ground states/eigenstates
• correlation lengths: diverges across transition, long-range order
• order parameters; scaling across QPTs
• entanglement structure in the states

• Thermodynamic properties
• partition functions and thermodynamic potentials
• response functions, specific heat, susceptibilities

• Non-equilibrium dynamics
• dynamical response, structure factors
• non-equilibrium transport
• quantum chaos or lack thereof

Schmitt et al., Sci. Adv. 2022; Sandvik’s lecture note, Karrash et al. PRB 2014
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Exact Diagonalisation



Basic structure of an ED code

1. Construct and enumerate the basis states
• label the sites of your lattice
• enumerate the basis states ⇒ assign an unique integer label to each basis state
• pick out the subset of basis states allowed by symmetries/conservation laws

2. Construct the Hamiltonian as a matrix
• identify the diagonal elements of the Hamiltonian ⇒ these just associate numbers to each basis state
• identify the off-diagonal terms in the Hamiltonian ⇒ for each term identify the set of basis states every basis state is

connected to under the action of the term

3. Diagonalise the Hamiltonian ⇒ extract the required eigenvalues and eigenvectors
4. Compute observabes

• express the operators of interest as matrices in the constructed basis
• expectation values as matrix-vector multiplications
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Simplest ED problem

Single particle hopping on some random lattice

H = −t
∑
⟨ij⟩

c†i cj +
∑

i
ϵic†i ci

• real-space basis a natural choice
• |2⟩ = [0, 0, 1, 0, 0, 0]T is a basis state localised on site 2 of the

lattice
• onsite potentials {ϵi} form the diagonal elements
• hopping between sites connected by lines constitute the

off-diagonal elements

1

2
0

4

5

3

H =



ϵ0 1 1 0 1 0
1 ϵ1 1 0 0 1
1 1 ϵ2 1 0 0
0 0 1 ϵ3 1 1
1 0 0 1 ϵ4 1
0 1 0 1 1 ϵ5.


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ED of an interacting spin-1/2 system: construction of basis

• Interacting spin Hamiltonian on a 1D chain

H = J
L−1∑
i=0

[σx
i σ

x
i+1 + σy

i σ
y
i+1 + σz

i σ
z
i+1] +

∑
i

hiσ
z
i

• Computational basis: classical configurations of σz-product states
• Enumeration of the basis states: spin-configurations → binary strings → integers

Configuration String Integer
↑↑↑↑ 0000 0
↑↑↑↓ 0001 1
↑↑↓↑ 0010 2
↑↑↓↓ 0011 3
↑↓↑↑ 0100 4

...
...

...
↓↓↓↓ 1111 15

• Convert binary string {bL−1, · · · , b1, b0} to
an integer I:

I =
L−1∑
i=0

bi2i

• Convert integer to I to binary string
• at each step divide I/2: remainder forms the

binary digit and update I to the quotient

Quotient Binary
7//2 = 3 1
3//2 = 1 1
1//2 = 0 1
0//2 = 0 0

|7⟩ = |0 · · · 0111⟩
= |↑ · · · ↑↓↓↓⟩
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ED of an interacting spin-1/2 system: construction of Hamiltonian

• Identify the diagonal and off-diagonal components of the Hamiltonian in the computational basis

Hdiag = J
L−1∑
i=0

[σz
i σ

z
i+1] +

∑
i

hiσ
z
i Hoff-diag = J

L−1∑
i=0

[σx
i σ

x
i+1 + σy

i σ
y
i+1] = J

L−1∑
i=0

[σ+
i σ−

i+1 + σ−
i σ+

i+1]

Diagonal part:

• Take state |I⟩ = {b(I)
L−1, · · · , b

(I)
1 , b(I)

0 }

• Diagonal element HII = EI: the energy
of the classical configuration

EI = J
∑

i
(−1)b(I)i +b(I)i +

∑
i

hi(−1)b(I)i

Off-diagonal part:
• spin-flips, connect different spin configurations
• for each state |I⟩, locate the states |K⟩ for which ⟨K|H|I⟩ ̸= 0
• Hoff-diag flips nearest-neighbour anti-parallel spins
• for a given state |I⟩, go to each site i

XOR(b(I)
i , b(I)

i+1) =

{
1; if antiparallel
0; if parallel

• if anti-parallel generate a new state

{· · · b(I)
i+1b(I)

i · · · } ⇒ {· · · b(I)
i b(I)

i+1 · · · }

• generate the decimal representation of new binary string ≡ K
and set HIK = J
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ED of an interacting spin-1/2 system: What does the Hamiltonian look like?

Hamiltonian:

H = J
L−1∑
i=0

[σx
i σ

x
i+1 + σy

i σ
y
i+1 + σz

i σ
z
i+1] +

∑
i

hiσ
z
i

Plot of Hamiltonian matrix for L = 6
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Conservation laws/Symmetries
• Total z-magnetisation

Sz =
∑

i σ
z
i is a conserved

quantity:

[H, Sz] = 0

• Reorder the basis states to
group them according to their
Sz

• Hamiltonian becomes block
diagonal

• Each block can be diagonalised
separately

Hamiltonian in block diagonal form
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ED of an interacting spin-1/2 system: Construct basis with symmetries

Why do we want to do this?

• Often, interested in problems with a fixed magnetisation, total particle number etc.
• If we do not treat each block separately, we can get spurious errors due to accidental near degenracies of

eigenvalues, eigenstates mixed between different sectors
• Constructing the full matrix and slicing off the sector of interest is redundant
• Wastage of computational resources; can make the difference between being able and not being able to

simulate beyond certain sizes

Comes at a cost

• We need to work a bit harder to efficiently enumerate the basis with symmetries
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ED of an interacting spin-1/2 system: construction of basis with symmetries

Consider the sector with Sz = 0

Table of configurations and their decimal represetnations
Configuration I J(I) Configuration I J(I)

000111 7 0 100011 35 10
001011 11 1 100101 37 11
001101 13 2 100110 38 12
001110 14 3 101001 41 13
010011 19 4 101010 42 14
010101 21 5 101100 44 15
010110 24 6 110001 49 16
011001 25 7 110010 50 17
011010 26 8 110100 52 18
011100 28 9 111000 56 19

Enumerating the basis
• brute force way is to assign indices in

increasing order of the decimal
representations of the binary strings

• makes it very inefficient:
• for every decimal I, we have to search

through the entire (sorted) list to find
the appropriate J(I)

• two of the possible ways around
• hashing functions
• Lin tables Lin, PRB 1990
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ED of an interacting spin-1/2 system: construction of basis with symmetries

Hashing functions

• associate the index of the basis state to the decimal representation of the binray string
• Example:

h(I) = [I(mod)λ] + 1

Table of configurations and their decimal represetnations
Configuration I J(I) h(I) Configuration I J(I) h(I)

000111 7 0 8 100011 35 10 13
001011 11 1 12 100101 37 11 15
001101 13 2 14 100110 38 12 16
001110 14 3 15 101001 41 13 19
010011 19 4 20 101010 42 14 20
010101 21 5 22 101100 44 15 22
010110 24 6 2 110001 49 16 4
011001 25 7 3 110010 50 17 5
011010 26 8 4 110100 52 18 7
011100 28 9 6 111000 56 19 11

A general issue with hashing
functions

• collisions: non-unique
hashing values

• very difficult to avoid
collisions

14



ED of an interacting spin-1/2 system: construction of basis with symmetries

Hashing functions

• associate the index of the basis state to the decimal representation of the binray string
• Example:

h(I) = [I(mod)λ] + 1

Table of configurations and their decimal represetnations
Configuration I J(I) h(I) Configuration I J(I) h(I)

000111 7 0 8 100011 35 10 13
001011 11 1 12 100101 37 11 15
001101 13 2 14 100110 38 12 16
001110 14 3 15 101001 41 13 19
010011 19 4 20 101010 42 14 20
010101 21 5 22 101100 44 15 22
010110 24 6 2 110001 49 16 4
011001 25 7 3 110010 50 17 5
011010 26 8 4 110100 52 18 7
011100 28 9 6 111000 56 19 11

A general issue with hashing
functions

• collisions: non-unique
hashing values

• very difficult to avoid
collisions

14



ED of an interacting spin-1/2 system: Lin Tables Lin PRB 1990

• basic idea is to not have a large 1D search
• split the lattice into two parts, A and B, and convert the search for the indices into a 2D search
• Define two integers, one for each part

IA =

L/2−1∑
i=0

b(I)
i 2i IB =

L/2−1∑
i=0

b(I)
i+L/22i

• Define two vectors JA(IA) and JB(IB) so that the position of the configuration represented by integer I is
given by

J = JA(IA) + JB(IB)

• maximum length of JA and JB is the square root of length of J(I)
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ED of an interacting spin-1/2 system: Lin Tables Lin PRB 1990
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