
Computational Methods for Quantum Many-Body Physics

Sthitadhi Roy1 and Arnab Sen2

May 24, 2023

1ICTS-TIFR, Bengaluru
2IACS, Kolkata

Lecture 2

Recap of Lecture 1

• overview of physics and kinds of physical systems we will be treating
• overview of techniques we will be discussing
• Exact diagonalisation for spin systems

• Constructing the basis states
• Encoding them as binary strings
• Efficient ways of tabulating them so that they are easy to look up [Lin Tables]
• Implementing U(1) symmetry
• constructing the Hamiltonian

This lecture: diagonalising the Hamiltonian, and extracting eigenvalues and eigenvectors

2

Structure of the Hamiltonian matrix

H = J
L−1∑
i=0

[σx
i σ

x
i+1 + σy

i σ
y
i+1 + σz

i σ
z
i+1] +

∑
i

hiσ
z
i

Plot of Hamiltonian matrix for L = 6

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Block diagonalised into total Sz sectors

0 10 20 30 40 50 60
0

10

20

30

40

50

60

• the Hamiltonian is very sparse
• lots of zeros in the Hamiltonian

3

Sparsity of the Hamiltonian matrix

Plot of Hamiltonian matrix for
L = 6

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Plot of Hamiltonian matrix for
L = 8

0 50 100 150 200 250
0

50

100

150

200

250

Plot of Hamiltonian matrix for
L = 10

0 200 400 600 800 1000
0

200

400

600

800

1000

• with increasing system size, the Hamiltonian seems to become more and more sparse
• define

density =
non-zero elements

(Hilbert-space dimension)2

4

Sparsity of the Hamiltonian matrix

Plot of sparsity vs L

8 10 12 14 16 18 20
L

10 5

10 4

10 3

10 2

de
ns

ity

• the density decreases
exponentially with L

Why is the Hamiltonian so sparse?
• due to the locality of the Hamiltonian
• from any basis state, we have O(L) rearrangements possible
• each row has O(L) non-zero elements
•

density ∼
D × L
D2 ∼ Le−L

• even for long-ranged interacting, but local systems

H =
∑

i,j

J
|i − j|α

[σx
i σ

x
i+1 + σy

i σ
y
i+1 + σz

i σ
z
i+1] +

∑
i

hiσ
z
i

• each row has O(L2) non-zero elements

density ∼ L2e−L

Generally Hamiltonians of locally interacting quantum systems are sparse ⇒ ought to take advantage of that

5

Sparse matrices are efficient to store and manipulate

Why use sparse matrices?

• storing all the zeros is redundant, instead only store the non-zero elements and their locations (row and
column indices)

• memory efficient; fraction of memory needed is only 3 × density
• extremely efficient matrix-vector multiplication (particularly when the sparse matrix is stored in CSR

format) ⇒ useful because much of quantum mechanics is applying operators (matrices) on states (vectors)

Representing sparse matrices on a computer

COO: Coordinate List
• store 3 lists/arrays of length = number of non-zero

elements
• values of the non-zero element
• row indices
• column indices

CSR: Compressed Sparse Row
• again 3 lists/arrays

• values of the non-zero element
• column indices
• row-pointer indices

6

COO Sparse Matrix: Example

Example matrix 

0 0.04 0 0 0 0.18
0.08 0 0 0 0 0

0 0.14 1.88 0.44 0 0.62
0 0 0 1.21 0 0
0 0 0.63 0 0 0
0 1.43 0.45 0 0 0.34)


COO representation

data 0.04 0.18 0.08 0.14 1.88 0.44 0.62 1.21 0.63 1.43 0.45 0.34
row 0 0 1 2 2 2 2 3 4 5 5 5
col 1 5 0 1 2 3 5 3 2 1 2 5

7

CSR Sparse Matrix

• the structure is slightly different from COO
• the lists containing the matrix elements and the column indices are the same as COO
• the information of the row indices are stored somewhat differently: call it rowptr

• length of rowptr = 1+# rows in
the matrix

• rowptr= 0
• rowptr[i] = the total number of

non-zero elements until row i

Example:

8

Sparse matrix-vector multiplication: COO

Ax = y

• recall the three lists, data, rowind, colind

• define nnz = number of non-zero elements in the sparse matrix
• data[i]= Arowind[i],colind[i]

pseudo-code for a COO matrix-vector multiplication

for(i=0; i<nnz; i++)

y[rowind[i]] += data[i]*x[colind[i]]

• the number of operations required is nnz; recall that nnz/D2 is extremely small
• already we are getting rid of lots of redundancies

9

Sparse matrix-vector multiplication: CSR

• recall the three lists again
• data: length is nnz
• colind: length is nnz
• rowptr: length is N+1; N is the number of rows in the

matrix

pseudo-code for a CSR matrix-vector multiplication

for (i=0; i<N; i++){

y[i] = 0.0;

for (j=rowptr[i]; j<rowptr[i+1]; j++)

y[i] += data[j]*x[colind[j]];

}

• we do not have to look up each row of the sparse
matrix over and over and again

• already we are getting rid of lots of redundancies

Example

10

Brief summary so far...

• Hamiltonians of locally interacting systems have lots of zeros
• Store them as sparse matrices; only keep track of the non-zero elements
• extremely efficient because fraction of filled in elements goes down exponentially with system size
• different formats for storing sparse matrices on a computer: COO, CSR (also CSC, DIA etc.)
• efficient sparse matrix-vector multiplication

How to use the efficient sparse matrix-vector multiplication to extract eigenvalues and eigenvectors

11

Brief summary so far...

• Hamiltonians of locally interacting systems have lots of zeros
• Store them as sparse matrices; only keep track of the non-zero elements
• extremely efficient because fraction of filled in elements goes down exponentially with system size
• different formats for storing sparse matrices on a computer: COO, CSR (also CSC, DIA etc.)
• efficient sparse matrix-vector multiplication

12

Lanczos algorithm for Exact Diagonalisation

Basic idea: iteratively converge to the target eigenvalues and eigenvectors

• Power-law iteration
• Basic Lanczos algorithm
• Lanczos algorithm on a truncated Krylov space

An essential point: these iterative procedures converge best to extremal eigenvalues

• ground state physics and low-lying excitations (often of extreme interest) naturally conducive
• for states in the middle of many-body spectrum (relevant for dynamics), we have to transform the

hamiltonian (next lecture)
• Shift-invert ED
• Polynomially-filtered ED

13

Lanczos algorithm for Exact Diagonalisation

Power-iteration method

• Consider a Hamiltonian H with eigenvalues and eigenvectors H |ψi⟩ = Ei |ψi⟩
• Let’s say |ψ0⟩ is the ground state and the Hamiltonian as been scaled/shifted such that E0 has the

maximum magnitude
• Start with a random state |ϕ0⟩ ⇒ very unlikely that it will be orthogonal to the ground state.

|ϕ0⟩ =
∑

i
ci |ψi⟩ ; ⟨ψ0|ϕ0⟩ = c0 ̸= 0

• Apply the Hamiltonian n times and renormalise the state

|ϕ(n)0 ⟩ =
Hn |ϕ0⟩

||Hn |ϕ0⟩ ||
=

∑
i

ci
c0

(
Ei
E0

)n
|ψi⟩[∑

i
|ci|2
|c0|2

(
Ei
E0

)2n
]1/2

• For large n ≫ 1
|ϕ(n)0 ⟩ = |ψ0⟩+ error; error ∼ max

i

∣∣∣∣ Ei
E0

∣∣∣∣n
• Generate another random state |ϕ1⟩ and orthogonalise to |ψ0⟩ and repeat to get the next excited state
• works best when the extremal values are well separated: low density of states

14

Lanczos algorithm for Exact Diagonalisation

Can do much better: basic idea is that the ground state and low-lying excited states live in a small subspace
of the entire Hilbert-space
Basic Lanczos algorithm

• Consider a random state as before |ϕ0⟩

• define a0 = ⟨ϕ0|H|ϕ0⟩

• Generate |ϕ̃1⟩ which is orthogonal to |ϕ0⟩ as |ϕ̃1⟩ = H |ϕ0⟩ − |ϕ0⟩ ⟨ϕ0|H|ϕ0⟩

• Normalise the state |ϕ1⟩ = |ϕ̃1⟩ /
√

⟨ϕ̃1|ϕ̃1⟩ = |ϕ̃1⟩ /b1; note that b1 = ⟨ϕ1|ϕ0⟩

• define a1 = ⟨ϕ1|H|ϕ1⟩

• allows to define a reduced Hamiltonian

Hspan[|ϕ0⟩,H|ϕ0⟩] =

(
a0 b1
b1 a1

)

• diagonalise the reduced Hamiltonian to get the ground state |ϕ(1)0 ⟩ = α |ϕ0⟩+ β |ϕ1⟩

• repeat the same procedure on span[|ϕ(1)0 ⟩ ,H |ϕ(1)0 ⟩] and iterate. . .

15

Lanczos algorithm for Exact Diagonalisation

Basic Lanczos algorithm

• minimise on span[|ϕ0⟩ ,H |ϕ0⟩] to obtain |ϕ(1)0 ⟩

• minimise on span[|ϕ(1)0 ⟩ ,H |ϕ(1)0 ⟩] to obtain |ϕ(2)0 ⟩ ∈ span[|ϕ0⟩ ,H |ϕ0⟩ ,H2 |ϕ0⟩]

• minimise on span[|ϕ(2)0 ⟩ ,H |ϕ(2)0 ⟩] to obtain |ϕ(3)0 ⟩ ∈ span[|ϕ0⟩ ,H |ϕ0⟩ ,H2 |ϕ0⟩ ,H3 |ϕ0⟩]

•
.. .

A better Lanczos algorithm
• Instead of the iterative minimisation over the two-dimensional subspaces, minimise directly over the Krylov

subspace
Km(|ϕ0⟩) = span[|ϕ0⟩ ,H |ϕ0⟩ ,H2 |ϕ0⟩ ,H3 |ϕ0⟩ , · · · ,Hm |ϕ0⟩]

• many-more degrees of freedom ⇒ much better and faster convergence

16

Lanczos algorithm for Exact Diagonalisation in Krylov subspace
How to construct the orthonormal basis in Krylov
subspace?

|ϕ0⟩ ≡ random vector normalised
b1 |ϕ

(1)
0 ⟩ = H |ϕ0⟩ − a0 |ϕ0⟩

b2 |ϕ
(2)
0 ⟩ = H |ϕ(1)0 ⟩ − a1 |ϕ

(1)
0 ⟩ − b1 |ϕ0⟩

b3 |ϕ
(3)
0 ⟩ = H |ϕ(2)0 ⟩ − a2 |ϕ

(2)
0 ⟩ − b2 |ϕ

(1)
0 ⟩

. . .

Reduced Hamiltonian in the Krylov space

H |ϕ(n)0 ⟩ = bn |ϕ(n−1)
0 ⟩+ an |ϕ(n)0 ⟩+ bn+1 |ϕ

(n+1)
0 ⟩

• tridiagonal matrices are very easy to diagonalise: look up algorithms
• more importantnly, the dimension of the the tridiagonal matrix can be extremely small compared to the

original Hilbert-space dimension
• in fact, one can progressively keep increasing the Krylov subspace dimension until all the required

eigenvalues/eigenvectors have converged

17

Lanczos algorithm for Exact Diagonalisation in Krylov subspace

Lanczos convergence for a 24 site Heisenberg chain taking into account some symmetries Sandvik’s lecture notes

18

