tata institute of fundamental research

Computational Methods for Quantum Many-Body Physics

Sthitadhi Roy ${ }^{1}$ and Arnab Sen ${ }^{2}$
May 24, 2023
${ }^{1}$ ICTS-TIFR, Bengaluru
${ }^{2}$ IACS, Kolkata

Lecture 2

- overview of physics and kinds of physical systems we will be treating
- overview of techniques we will be discussing
- Exact diagonalisation for spin systems
- Constructing the basis states
- Encoding them as binary strings
- Efficient ways of tabulating them so that they are easy to look up [Lin Tables]
- Implementing $U(1)$ symmetry
- constructing the Hamiltonian

This lecture: diagonalising the Hamiltonian, and extracting eigenvalues and eigenvectors

$$
H=J \sum_{i=0}^{L-1}\left[\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\sigma_{i}^{z} \sigma_{i+1}^{z}\right]+\sum_{i} h_{i} \sigma_{i}^{z}
$$

Plot of Hamiltonian matrix for $L=6$

Block diagonalised into total S^{z} sectors

- the Hamiltonian is very sparse
- lots of zeros in the Hamiltonian

Plot of Hamiltonian matrix for $L=6$

Plot of Hamiltonian matrix for $L=8$

Plot of Hamiltonian matrix for $L=10$

- with increasing system size, the Hamiltonian seems to become more and more sparse
- define

$$
\text { density }=\frac{\# \text { non-zero elements }}{(\text { Hilbert-space dimension })^{2}}
$$

Plot of sparsity vs L

- the density decreases exponentially with L

Why is the Hamiltonian so sparse?

- due to the locality of the Hamiltonian
- from any basis state, we have $\mathcal{O}(L)$ rearrangements possible
- each row has $\mathcal{O}(L)$ non-zero elements
-

$$
\text { density } \sim \frac{\mathcal{D} \times L}{\mathcal{D}^{2}} \sim L e^{-L}
$$

- even for long-ranged interacting, but local systems

$$
H=\sum_{i, j} \frac{J}{|i-j|^{\alpha}}\left[\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\sigma_{i}^{z} \sigma_{i+1}^{z}\right]+\sum_{i} h_{i} \sigma_{i}^{z}
$$

- each row has $\mathcal{O}\left(L^{2}\right)$ non-zero elements

$$
\text { density } \sim L^{2} e^{-L}
$$

Generally Hamiltonians of locally interacting quantum systems are sparse \Rightarrow ought to take advantage of that

Why use sparse matrices?

- storing all the zeros is redundant, instead only store the non-zero elements and their locations (row and column indices)
- memory efficient; fraction of memory needed is only $3 \times$ density
- extremely efficient matrix-vector multiplication (particularly when the sparse matrix is stored in CSR format) \Rightarrow useful because much of quantum mechanics is applying operators (matrices) on states (vectors)

Representing sparse matrices on a computer

COO: Coordinate List

- store 3 lists/arrays of length = number of non-zero elements
- values of the non-zero element
- row indices
- column indices

CSR: Compressed Sparse Row

- again 3 lists/arrays
- values of the non-zero element
- column indices
- row-pointer indices

Example matrix

$$
\left(\begin{array}{cccccc}
0 & 0.04 & 0 & 0 & 0 & 0.18 \\
0.08 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.14 & 1.88 & 0.44 & 0 & 0.62 \\
0 & 0 & 0 & 1.21 & 0 & 0 \\
0 & 0 & 0.63 & 0 & 0 & 0 \\
0 & 1.43 & 0.45 & 0 & 0 & 0.34)
\end{array}\right)
$$

COO representation												
data	0.04	0.18	0.08	0.14	1.88	0.44	0.62	1.21	0.63	1.43	0.45	0.34
row	0	0	1	2	2	2	2	3	4	5	5	5
col	1	5	0	1	2	3	5	3	2	1	2	5

- the structure is slightly different from COO
- the lists containing the matrix elements and the column indices are the same as COO
- the information of the row indices are stored somewhat differently: call it rowptr

Example:

- length of rowptr $=1+\#$ rows in the matrix
- rowptr $=0$
- rowptr [i] = the total number of non-zero elements until row i

$$
A=\left(\begin{array}{cccccc}
7.5 & 2.9 & 2.8 & 2.7 & 0 & 0 \\
6.8 & 5.7 & 3.8 & 0 & 0 & 0 \\
2.4 & 6.2 & 3.2 & 0 & 0 & 0 \\
9.7 & 0 & 0 & 2.3 & 0 & 0 \\
0 & 0 & 0 & 0 & 5.8 & 5.0 \\
0 & 0 & 0 & 0 & 6.6 & 8.1
\end{array}\right)
$$

$$
A x=y
$$

- recall the three lists, data, rowind, colind
- define $n n z=$ number of non-zero elements in the sparse matrix
- data[i] $=A_{\text {rowind }[i], \operatorname{colind[i]~}}$
pseudo-code for a COO matrix-vector multiplication

```
for(i=0; i<nnz; i++)
    y[rowind[i]] += data[i]*x[colind[i]]
```

- the number of operations required is nnz; recall that $\mathrm{nnz} / \mathcal{D}^{2}$ is extremely small
- already we are getting rid of lots of redundancies
- recall the three lists again
- data: length is nnz
- colind: length is nnz
- rowptr: length is $N+1$; N is the number of rows in the matrix
pseudo-code for a CSR matrix-vector multiplication

```
for (i=0; i<N; i++){
        y[i] = 0.0;
        for (j=rowptr[i]; j<rowptr[i+1]; j++)
            y[i] += data[j]*x[colind[j]];
}
```

Example

$$
A=\left(\begin{array}{cccccc}
7.5 & 2.9 & 2.8 & 2.7 & 0 & 0 \\
6.8 & 5.7 & 3.8 & 0 & 0 & 0 \\
2.4 & 6.2 & 3.2 & 0 & 0 & 0 \\
9.7 & 0 & 0 & 2.3 & 0 & 0 \\
0 & 0 & 0 & 0 & 5.8 & 5.0 \\
0 & 0 & 0 & 0 & 6.6 & 8.1
\end{array}\right)
$$

- we do not have to look up each row of the sparse matrix over and over and again
- already we are getting rid of lots of redundancies
- Hamiltonians of locally interacting systems have lots of zeros
- Store them as sparse matrices; only keep track of the non-zero elements
- extremely efficient because fraction of filled in elements goes down exponentially with system size
- different formats for storing sparse matrices on a computer: COO, CSR (also CSC, DIA etc.)
- efficient sparse matrix-vector multiplication

How to use the efficient sparse matrix-vector multiplication to extract eigenvalues and eigenvectors

- Hamiltonians of locally interacting systems have lots of zeros
- Store them as sparse matrices; only keep track of the non-zero elements
- extremely efficient because fraction of filled in elements goes down exponentially with system size
- different formats for storing sparse matrices on a computer: COO, CSR (also CSC, DIA etc.)
- efficient sparse matrix-vector multiplication

Lanczos algorithm for Exact Diagonalisation

Basic idea: iteratively converge to the target eigenvalues and eigenvectors

- Power-law iteration
- Basic Lanczos algorithm
- Lanczos algorithm on a truncated Krylov space

An essential point: these iterative procedures converge best to extremal eigenvalues

- ground state physics and low-lying excitations (often of extreme interest) naturally conducive
- for states in the middle of many-body spectrum (relevant for dynamics), we have to transform the hamiltonian (next lecture)
- Shift-invert ED
- Polynomially-filtered ED

Lanczos algorithm for Exact Diagonalisation

Power-iteration method

- Consider a Hamiltonian H with eigenvalues and eigenvectors $H\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle$
- Let's say $\left|\psi_{0}\right\rangle$ is the ground state and the Hamiltonian as been scaled/shifted such that E_{0} has the maximum magnitude
- Start with a random state $\left|\phi_{0}\right\rangle \Rightarrow$ very unlikely that it will be orthogonal to the ground state.

$$
\left|\phi_{0}\right\rangle=\sum_{i} c_{i}\left|\psi_{i}\right\rangle ; \quad\left\langle\psi_{0} \mid \phi_{0}\right\rangle=c_{0} \neq 0
$$

- Apply the Hamiltonian n times and renormalise the state

$$
\left|\phi_{0}^{(n)}\right\rangle=\frac{H^{n}\left|\phi_{0}\right\rangle}{\| H^{n}\left|\phi_{0}\right\rangle \|}=\frac{\sum_{i} \frac{c_{i}}{c_{0}}\left(\frac{E_{i}}{E_{0}}\right)^{n}\left|\psi_{i}\right\rangle}{\left[\sum_{i} \frac{\left|c_{i}\right|^{2}}{\left|c_{0}\right|^{2}}\left(\frac{E_{i}}{E_{0}}\right)^{2 n}\right]^{1 / 2}}
$$

- For large $n \gg 1$

$$
\left|\phi_{0}^{(n)}\right\rangle=\left|\psi_{0}\right\rangle+\text { error; } \quad \text { error } \sim \max _{i}\left|\frac{E_{i}}{E_{0}}\right|^{n}
$$

- Generate another random state $\left|\phi_{1}\right\rangle$ and orthogonalise to $\left|\psi_{0}\right\rangle$ and repeat to get the next excited state
- works best when the extremal values are well separated: low density of states

Lanczos algorithm for Exact Diagonalisation

Can do much better: basic idea is that the ground state and low-lying excited states live in a small subspace of the entire Hilbert-space
Basic Lanczos algorithm

- Consider a random state as before $\left|\phi_{0}\right\rangle$
- define $a_{0}=\left\langle\phi_{0}\right| H\left|\phi_{0}\right\rangle$
- Generate $\left|\tilde{\phi}_{1}\right\rangle$ which is orthogonal to $\left|\phi_{0}\right\rangle$ as $\left|\tilde{\phi}_{1}\right\rangle=H\left|\phi_{0}\right\rangle-\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right| H\left|\phi_{0}\right\rangle$
- Normalise the state $\left|\phi_{1}\right\rangle=\left|\tilde{\phi}_{1}\right\rangle / \sqrt{\left\langle\tilde{\phi}_{1} \mid \tilde{\phi}_{1}\right\rangle}=\left|\tilde{\phi}_{1}\right\rangle / b_{1} ; \quad$ note that $b_{1}=\left\langle\phi_{1} \mid \phi_{0}\right\rangle$
- define $a_{1}=\left\langle\phi_{1}\right| H\left|\phi_{1}\right\rangle$
- allows to define a reduced Hamiltonian

$$
H_{\mathrm{span}\left[\left|\phi_{0}\right\rangle, H\left|\phi_{0}\right\rangle\right]}=\left(\begin{array}{ll}
a_{0} & b_{1} \\
b_{1} & a_{1}
\end{array}\right)
$$

- diagonalise the reduced Hamiltonian to get the ground state $\left|\phi_{0}^{(1)}\right\rangle=\alpha\left|\phi_{0}\right\rangle+\beta\left|\phi_{1}\right\rangle$
- repeat the same procedure on $\operatorname{span}\left[\left|\phi_{0}^{(1)}\right\rangle, H\left|\phi_{0}^{(1)}\right\rangle\right]$ and iterate...

Lanczos algorithm for Exact Diagonalisation

Basic Lanczos algorithm

- minimise on $\operatorname{span}\left[\left|\phi_{0}\right\rangle, H\left|\phi_{0}\right\rangle\right]$ to obtain $\left|\phi_{0}^{(1)}\right\rangle$
= minimise on span $\left[\left|\phi_{0}^{(1)}\right\rangle, H\left|\phi_{0}^{(1)}\right\rangle\right]$ to obtain $\left|\phi_{0}^{(2)}\right\rangle \in \operatorname{span}\left[\left|\phi_{0}\right\rangle, H\left|\phi_{0}\right\rangle, H^{2}\left|\phi_{0}\right\rangle\right]$
- minimise on $\operatorname{span}\left[\left|\phi_{0}^{(2)}\right\rangle, H\left|\phi_{0}^{(2)}\right\rangle\right]$ to obtain $\left|\phi_{0}^{(3)}\right\rangle \in \operatorname{span}\left[\left|\phi_{0}\right\rangle, H\left|\phi_{0}\right\rangle, H^{2}\left|\phi_{0}\right\rangle, H^{3}\left|\phi_{0}\right\rangle\right]$
-

A better Lanczos algorithm

- Instead of the iterative minimisation over the two-dimensional subspaces, minimise directly over the Krylov subspace

$$
\mathcal{K}^{m}\left(\left|\phi_{0}\right\rangle\right)=\operatorname{span}\left[\left|\phi_{0}\right\rangle, H\left|\phi_{0}\right\rangle, H^{2}\left|\phi_{0}\right\rangle, H^{3}\left|\phi_{0}\right\rangle, \cdots, H^{m}\left|\phi_{0}\right\rangle\right]
$$

- many-more degrees of freedom \Rightarrow much better and faster convergence

Lanczos algorithm for Exact Diagonalisation in Krylov subspace

How to construct the orthonormal basis in Krylov

 subspace?Reduced Hamiltonian in the Krylov space

$$
H\left|\phi_{0}^{(n)}\right\rangle=b_{n}\left|\phi_{0}^{(n-1)}\right\rangle+a_{n}\left|\phi_{0}^{(n)}\right\rangle+b_{n+1}\left|\phi_{0}^{(n+1)}\right\rangle
$$

$$
H_{\mathcal{K}^{L}\left(\left|v_{0}\right\rangle\right)}=\left(\begin{array}{ccccccc}
a_{0} & b_{1} & 0 & 0 & & 0 & 0 \\
b_{1} & a_{1} & b_{2} & 0 & \cdots & 0 & 0 \\
0 & b_{2} & a_{2} & b_{3} & & 0 & 0 \\
0 & 0 & b_{3} & a_{3} & & 0 & 0 \\
& \vdots & & & \ddots & \vdots & \\
0 & 0 & 0 & 0 & & a_{L-1} & b_{L} \\
0 & 0 & 0 & 0 & \cdots & b_{L} & a_{L}
\end{array}\right)
$$

- tridiagonal matrices are very easy to diagonalise: look up algorithms
- more importantnly, the dimension of the the tridiagonal matrix can be extremely small compared to the original Hilbert-space dimension
- in fact, one can progressively keep increasing the Krylov subspace dimension until all the required eigenvalues/eigenvectors have converged

Lanczos convergence for a 24 site Heisenberg chain taking into account some symmetries Sandvik's lecture notes

