INTERNATIONAL

S CENTRE for
“VICTS THEORETICAL
SCIENCES

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Computational Methods for Quantum Many-Body Physics

Sthitadhi Roy! and Arnab Sen®
May 24, 2023

LICTS-TIFR, Bengaluru
2IACS, Kolkata

Lecture 2

Recap of Lecture 1

= overview of physics and kinds of physical systems we will be treating
= overview of techniques we will be discussing

= Exact diagonalisation for spin systems
= Constructing the basis states
= Encoding them as binary strings
= Efficient ways of tabulating them so that they are easy to look up [Lin Tables]
= Implementing U(1) symmetry
= constructing the Hamiltonian

This lecture: diagonalising the Hamiltonian, and extracting eigenvalues and eigenvectors

L-1

Structure of the Hamiltonian matrix

H= JZ[U?‘U,’{H +olol, +ofoia]+ Z hio?

Plot of Hamiltonian matrix for L = 6

i=0

10{ ™ "-.__‘. .

60 1 -

20 A .?' .'.
NN
30 A '._r "

w] - -.__"‘-
] \E%x

= the Hamiltonian is very sparse
= |ots of zeros in the Hamiltonian

i

Block diagonalised into total S* sectors

0

104

20 A

30 A

40

50

60

0

10 20 30 40 50 60

Sparsity of the Hamiltonian matrix

Plot of Hamiltonian matrix for Plot of Hamiltonian matrix for Plot of Hamiltonian matrix for
L=6 L=238 L=10

0 10 20 30 40 50 60 0 50 100 150 200 250 0 200 400 600 800 1000

N %
04 ™ . RN X K 1

1 =, S
\“-.:'%*‘}r‘m *‘\‘\‘\\ N \9\\ N
. .. R RN
50 .'._ '\"\-.:‘?-q_;; 200 x\ 8001 \\\\
\

60 1 -

1000 4

= with increasing system size, the Hamiltonian seems to become more and more sparse

= define
non-zero elements

density =
Y (Hilbert-space dimension)?

Sparsity of the Hamiltonian matrix

Plot of sparsity vs L

Why is the Hamiltonian so sparse?

1072 n

= the density decreases
exponentially with L

due to the locality of the Hamiltonian
from any basis state, we have O(L) rearrangements possible

each row has O(L) non-zero elements

DxL
density ~ o~ Let

even for long-ranged interacting, but local systems
H _ J X __X y_y z_z h z
= E 7“7]_'&[oiai+1+oioi+1+aia,+1]+ E o7
inj i

each row has O(L?) non-zero elements

density ~ L2e t

Generally Hamiltonians of locally interacting quantum systems are sparse = ought to take advantage of that

Sparse matrices are efficient to store and manipulate

Why use sparse matrices?

= storing all the zeros is redundant, instead only store the non-zero elements and their locations (row and

column indices)
= memory efficient; fraction of memory needed is only 3 X density

= extremely efficient matrix-vector multiplication (particularly when the sparse matrix is stored in CSR
format) = useful because much of quantum mechanics is applying operators (matrices) on states (vectors)

Representing sparse matrices on a computer

COO: Coordinate List CSR: Compressed Sparse Row
= store 3 lists/arrays of length = number of non-zero = again 3 lists/arrays
elements = values of the non-zero element
= values of the non-zero element = column indices
= row indices = row-pointer indices

= column indices

COOQO Sparse Matrix: Example

Example matrix

0 0.04 0 0 0 0.18
0.08 0 0 0 0 0
0 0.14 188 044 0 0.62
0 0 0 121 0 0
0 0 0.63 0 0 0
0 1.43 0.45 0 0 0.34)

COO representation
data | 0.04 0.18 0.08 0.14 1838 044 062 121 063 143 045 0.34
row 0 0 1 2 2 2 2 3 4 5 5 5
col 1 5 0 1 2 3 5 3 2 1 2 5

CSR Sparse Matrix

= the structure is slightly different from COO
= the lists containing the matrix elements and the column indices are the same as COO

= the information of the row indices are stored somewhat differently: call it rowptr

Example:

75 29 28 27 0 0

= length of rowptr = 1+4# rows in £ o 5 B W i

the matrix "TrTYE R

A= ’ ’ ‘

= rowptr=20 97 0 0 23 0 0

= rowptr[i] = the total number of 0 0 0 58 50

non-zero elements until row i 0 0 0 66 8.1
rowptr: 10 12 14 16

(0o 4 7)
colind: (0 1 2 3 0 1 2 0 1 2 0 3 4 5 4 5)
val: (75 29 28 2.7 6.8 5.7 3.8 24 6.2 3.2 9.7 23 58 50 6.6 8.1)

Sparse matrix-vector multiplication: COO

= recall the three lists, data, rowind, colind
= define nnz = number of non-zero elements in the sparse matrix

= datalil= Arouindlil,colind[i]

pseudo-code for a COO matrix-vector multiplication

for(i=0; i<nnz; i++)

y[rowind[i]] += data[il#*x[colind[i]]

= the number of operations required is nnz; recall that nnz/D2 is extremely small

= already we are getting rid of lots of redundancies

Sparse matrix-vector multiplication: CSR

= recall the three lists again

= data: length is nnz
= colind: length is nnz
= rowptr: length is N+1; N is the number of rows in the

matrix
Example
75 29 28 27 0 0
pseudo-code for a CSR matrix-vector multiplication €& B9 5E. 5 0 @
24 62 32 0 0 0
A=
97 0 0 23 0 0
for (i=0; i<N; i++){ 0 0 0 0 58 50
. 0 0 0 0 66 81
y[i]l = 0.0;
rowptr: (0 4 7 10 12 14 16)
for (j=rowptr([il; j<rowptr[i+1]; j++) //// \\\&\\y,
y[i] += datal[jl*x[colind[j1]; colind: (0 1 2 3 0 1 2 0 1 2 0 3 4 5 4 5)

val: (75 2.9 2.8 2.7 68 5.7 3.8 2.4 6.2 3.2 9.7 23 58 5.0 6.6 8.1)

= we do not have to look up each row of the sparse
matrix over and over and again

= already we are getting rid of lots of redundancies

Brief summary so far...

= Hamiltonians of locally interacting systems have lots of zeros

= Store them as sparse matrices; only keep track of the non-zero elements

= extremely efficient because fraction of filled in elements goes down exponentially with system size
= different formats for storing sparse matrices on a computer: COO, CSR (also CSC, DIA etc.)

= efficient sparse matrix-vector multiplication

How to use the efficient sparse matrix-vector multiplication to extract eigenvalues and eigenvectors

Brief summary so far...

= Hamiltonians of locally interacting systems have lots of zeros

= Store them as sparse matrices; only keep track of the non-zero elements

= extremely efficient because fraction of filled in elements goes down exponentially with system size
= different formats for storing sparse matrices on a computer: COO, CSR (also CSC, DIA etc.)

= efficient sparse matrix-vector multiplication

Lanczos algorithm for Exact Diagonalisation

Basic idea: iteratively converge to the target eigenvalues and eigenvectors

= Power-law iteration
= Basic Lanczos algorithm

= Lanczos algorithm on a truncated Krylov space
An essential point: these iterative procedures converge best to extremal eigenvalues

= ground state physics and low-lying excitations (often of extreme interest) naturally conducive
= for states in the middle of many-body spectrum (relevant for dynamics), we have to transform the
hamiltonian (next lecture)

= Shift-invert ED
= Polynomially-filtered ED

Lanczos algorithm for Exact Diagonalisation

Power-iteration method

= Consider a Hamiltonian H with eigenvalues and eigenvectors H|v;) = E;|¢;)

= Let's say |t)p) is the ground state and the Hamiltonian as been scaled/shifted such that Ey has the
maximum magnitude

= Start with a random state |¢g) = very unlikely that it will be orthogonal to the ground state.

po) =D cilvi)i (Yolgo) =co #0

i

= Apply the Hamiltonian n times and renormalise the state

wig) _ T (&) 1)

l6y”) = =
0 [|[H™ |¢o) || 5]2 5)2,1 1/2
eol? \ Eo
= Forlarge n>1
E; |"
|¢(()n)) = |¢g) + error; error ~v max | —
f 0

= Generate another random state |¢1) and orthogonalise to |1p) and repeat to get the next excited state

= works best when the extremal values are well separated: low density of states

Lanczos algorithm for Exact Diagonalisation

Can do much better: basic idea is that the ground state and low-lying excited states live in a small subspace
of the entire Hilbert-space
Basic Lanczos algorithm

= Consider a random state as before |¢g)

= define ag = (¢o|H|¢o)
= Generate |¢;) which is orthogonal to |¢o) as |¢1) = H|po) — |do) (do|H|¢o)

= Normalise the state |¢1) = \¢~31>/ <¢N>1|<Z>1> = |¢N)1> /bi; note that by = (¢1]¢o)
= define a; = (¢1|H|¢1)

= allows to define a reduced Hamiltonian

H o ap b1
span[|¢o),H|¢o)] = b a

= diagonalise the reduced Hamiltonian to get the ground state |¢gl)) = a|po) + B |P1)

= repeat the same procedure on span[|¢él)> , H\q&él))] and iterate. . .

Lanczos algorithm for Exact Diagonalisation

Basic Lanczos algorithm

= minimise on span(|¢o) , H|¢po)] to obtain |¢(()1))
- minimise on span[|¢$") , H|¢§")] to obtain 67} € span(|go) , H|do) , H? |¢o)]
= minimise on span[¢{2)) , H[6{)] to obtain |6} € span(ldo) , H o) , H |0} , H [do)]

.

A better Lanczos algorithm

= |nstead of the iterative minimisation over the two-dimensional subspaces, minimise directly over the Krylov
subspace

K™(|$0)) = span[l¢o) , H|¢o) , H* |do) , H¥ [}, -+, H™ |o)]

= many-more degrees of freedom = much better and faster convergence

.

Lanczos algorithm for Exact Diagonalisation in Krylov subspace

How to construct the orthonormal basis in Krylov Reduced Hamiltonian in the Krylov space

subspace?
HI6") = bn |65 V) + an [607) + bsa o)

|[po) = random vector normalised
1y _ a by 0 0 0 0
bil¢g’) = Hlpo) — a0 |po) by a b, 0 0 0
balo) = HIp() — arl6f)) - bi léo) 0 b a b 0 0
bilot)) = HI8Y) - a o) — b |6f)) Hegqup= [0 O b 2 Y
0 0 0 0 a|r—1 b[_
0 0 0 0 bL ar

= tridiagonal matrices are very easy to diagonalise: look up algorithms

= more importantnly, the dimension of the the tridiagonal matrix can be extremely small compared to the
original Hilbert-space dimension

= in fact, one can progressively keep increasing the Krylov subspace dimension until all the required
eigenvalues/eigenvectors have converged

Lanczos algorithm for Exact Diagonalisation in Krylov subspace

Lanczos convergence for a 24 site Heisenberg chain taking into account some symmetries Sandvik's lecture notes

