

Computational Methods for Quantum Many-Body Physics

Sthitadhi Roy 1 and Arnab Sen 2 May 24, 2023

¹ICTS-TIFR, Bengaluru ²IACS, Kolkata

Lecture 2

- · overview of physics and kinds of physical systems we will be treating
- overview of techniques we will be discussing
- Exact diagonalisation for spin systems
 - Constructing the basis states
 - Encoding them as binary strings
 - Efficient ways of tabulating them so that they are easy to look up [Lin Tables]
 - Implementing U(1) symmetry
 - constructing the Hamiltonian

This lecture: diagonalising the Hamiltonian, and extracting eigenvalues and eigenvectors

$$H = J \sum_{i=0}^{L-1} [\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \sigma_i^z \sigma_{i+1}^z] + \sum_i h_i \sigma_i^z$$

Plot of Hamiltonian matrix for L = 6

Block diagonalised into total S^z sectors

- the Hamiltonian is very sparse
- lots of zeros in the Hamiltonian

Sparsity of the Hamiltonian matrix

- with increasing system size, the Hamiltonian seems to become more and more sparse
- define

density =
$$\frac{\# \text{ non-zero elements}}{(\text{Hilbert-space dimension})^2}$$

Sparsity of the Hamiltonian matrix

Plot of sparsity vs L

 the density decreases exponentially with L

Why is the Hamiltonian so sparse?

.

- due to the locality of the Hamiltonian
- from any basis state, we have $\mathcal{O}(L)$ rearrangements possible
- each row has $\mathcal{O}(L)$ non-zero elements
 - ${\rm density} \sim \frac{\mathcal{D} \times \textit{L}}{\mathcal{D}^2} \sim \textit{Le}^{-\textit{L}}$
- even for long-ranged interacting, but local systems

$$H = \sum_{i,j} \frac{J}{|i-j|^{\alpha}} [\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \sigma_i^z \sigma_{i+1}^z] + \sum_i h_i \sigma_i^z$$

- each row has $\mathcal{O}(L^2)$ non-zero elements
 - density $\sim L^2 e^{-L}$

Generally Hamiltonians of **locally interacting** quantum systems are sparse \Rightarrow ought to take advantage of that

Why use sparse matrices?

- storing all the zeros is redundant, instead only store the non-zero elements and their locations (row and column indices)
- memory efficient; fraction of memory needed is only $3 \times$ density
- extremely efficient matrix-vector multiplication (particularly when the sparse matrix is stored in CSR format) ⇒ useful because much of quantum mechanics is applying operators (matrices) on states (vectors)

Representing sparse matrices on a computer

COO: Coordinate List

- store 3 lists/arrays of length = number of non-zero elements
 - values of the non-zero element
 - row indices
 - column indices

CSR: Compressed Sparse Row

- again 3 lists/arrays
 - values of the non-zero element
 - column indices
 - row-pointer indices

Example matrix

			(0	0.04	0	0	0	0.18 \
				0.08	0	0	0	0	0
				0	0.14	1.88	0.44	0	0.62
				0	0	0	1.21	0	0
				0	0	0.63	0	0	0
			(0	1.43	0.45	0	0	0.34)/
sent	ation								
2.4	0 10	0.00	0 1 4	1 0	0 0	44 0	60 1	01	0.62

COO representation												
data	0.04	0.18	0.08	0.14	1.88	0.44	0.62	1.21	0.63	1.43	0.45	0.34
row	0	0	1	2	2	2	2	3	4	5	5	5
col	1	5	0	1	2	3	5	3	2	1	2	5

CSR Sparse Matrix

- the structure is slightly different from COO
- the lists containing the matrix elements and the column indices are the same as COO

Example:

• the information of the row indices are stored somewhat differently: call it rowptr

- length of rowptr = 1 + # rows in the matrix

- rowptr=0
- rowptr[i] = the total number of non-zero elements until row i

	/7.5	2.9	2.8	2.7	0	0
	6.8	5.7	3.8	0	0	0
4 -	2.4	6.2	3.2	0	0	0
A =	9.7	0	0	2.3	0	0
	0	0	0	0	5.8	5.0
	0	0	0	0	6.6	8.1

Ax = y

- recall the three lists, data, rowind, colind
- define nnz = number of non-zero elements in the sparse matrix
- data[i] = A_{rowind[i],colind[i]}

pseudo-code for a COO matrix-vector multiplication

```
for(i=0; i<nnz; i++)
y[rowind[i]] += data[i]*x[colind[i]]</pre>
```

- the number of operations required is nnz; recall that nnz/ \mathcal{D}^2 is extremely small
- already we are getting rid of lots of redundancies

- recall the three lists again
 - data: length is nnz
 - colind: length is nnz
 - rowptr: length is N+1; N is the number of rows in the matrix

```
pseudo-code for a CSR matrix-vector multiplication
```

```
for (i=0; i<N; i++){
    y[i] = 0.0;
    for (j=rowptr[i]; j<rowptr[i+1]; j++)
        y[i] += data[j]*x[colind[j]];
}</pre>
```

- we do not have to look up each row of the sparse matrix over and over and again
- already we are getting rid of lots of redundancies

Example

- Hamiltonians of locally interacting systems have lots of zeros
- Store them as sparse matrices; only keep track of the non-zero elements
- extremely efficient because fraction of filled in elements goes down exponentially with system size
- different formats for storing sparse matrices on a computer: COO, CSR (also CSC, DIA etc.)
- efficient sparse matrix-vector multiplication

How to use the efficient sparse matrix-vector multiplication to extract eigenvalues and eigenvectors

- Hamiltonians of locally interacting systems have lots of zeros
- Store them as sparse matrices; only keep track of the non-zero elements
- extremely efficient because fraction of filled in elements goes down exponentially with system size
- different formats for storing sparse matrices on a computer: COO, CSR (also CSC, DIA etc.)
- efficient sparse matrix-vector multiplication

Basic idea: iteratively converge to the target eigenvalues and eigenvectors

- Power-law iteration
- Basic Lanczos algorithm
- Lanczos algorithm on a truncated Krylov space

An essential point: these iterative procedures converge best to extremal eigenvalues

- ground state physics and low-lying excitations (often of extreme interest) naturally conducive
- for states in the middle of many-body spectrum (relevant for dynamics), we have to transform the hamiltonian (next lecture)
 - Shift-invert ED
 - Polynomially-filtered ED

Power-iteration method

- Consider a Hamiltonian H with eigenvalues and eigenvectors $H|\psi_i\rangle = E_i |\psi_i\rangle$
- Let's say $|\psi_0\rangle$ is the ground state and the Hamiltonian as been scaled/shifted such that E_0 has the maximum magnitude
- Start with a random state $|\phi_0\rangle \Rightarrow$ very unlikely that it will be orthogonal to the ground state.

$$|\phi_0
angle = \sum_i c_i |\psi_i
angle$$
 ; $\langle\psi_0|\phi_0
angle = c_0
eq 0$

• Apply the Hamiltonian *n* times and renormalise the state

$$\phi_{0}^{(n)}\rangle = \frac{H^{n} |\phi_{0}\rangle}{||H^{n} |\phi_{0}\rangle||} = \frac{\sum_{i} \frac{c_{i}}{c_{0}} \left(\frac{E_{i}}{E_{0}}\right)^{n} |\psi_{i}\rangle}{\left[\sum_{i} \frac{|c_{i}|^{2}}{|c_{0}|^{2}} \left(\frac{E_{i}}{E_{0}}\right)^{2n}\right]^{1/2}}$$

• For large $n \gg 1$

$$|\phi_{0}^{(n)}
angle = |\psi_{0}
angle + ext{error}; \qquad ext{error} \sim \max_{i} \left|rac{E_{i}}{E_{0}}
ight|^{n}$$

- Generate another random state $|\phi_1
 angle$ and orthogonalise to $|\psi_0
 angle$ and repeat to get the next excited state
- works best when the extremal values are well separated: low density of states

Can do much better: basic idea is that the ground state and low-lying excited states live in a small subspace of the entire Hilbert-space

Basic Lanczos algorithm

- Consider a random state as before $|\phi_0
 angle$
- define $a_0 = \langle \phi_0 | H | \phi_0 \rangle$
- Generate $|\tilde{\phi}_1\rangle$ which is orthogonal to $|\phi_0\rangle$ as $|\tilde{\phi}_1\rangle = H |\phi_0\rangle |\phi_0\rangle \langle \phi_0|H|\phi_0\rangle$
- Normalise the state $|\phi_1\rangle = |\tilde{\phi}_1\rangle / \sqrt{\langle \tilde{\phi}_1 | \tilde{\phi}_1 \rangle} = |\tilde{\phi}_1\rangle / b_1;$ note that $b_1 = \langle \phi_1 | \phi_0 \rangle$
- define $a_1 = \langle \phi_1 | H | \phi_1 \rangle$
- allows to define a reduced Hamiltonian

$$H_{\text{span}[|\phi_0
angle,H|\phi_0
angle]} = \begin{pmatrix} a_0 & b_1 \\ b_1 & a_1 \end{pmatrix}$$

- diagonalise the reduced Hamiltonian to get the ground state $|\phi_0^{(1)}\rangle = \alpha |\phi_0\rangle + \beta |\phi_1\rangle$
- repeat the same procedure on ${\rm span}[|\phi_0^{(1)}\rangle\,,H|\phi_0^{(1)}\rangle]$ and iterate. . .

Basic Lanczos algorithm

- minimise on span $[\ket{\phi_0},H\ket{\phi_0}]$ to obtain $\ket{\phi_0^{(1)}}$
- minimise on span[$|\phi_0^{(1)}\rangle$, $H|\phi_0^{(1)}\rangle$] to obtain $|\phi_0^{(2)}\rangle \in \text{span}[|\phi_0\rangle$, $H|\phi_0\rangle$, $H^2|\phi_0\rangle$]
- $\text{ minimise on span}[|\phi_0^{(2)}\rangle, H|\phi_0^{(2)}\rangle] \text{ to obtain } |\phi_0^{(3)}\rangle \in \text{span}[|\phi_0\rangle, H|\phi_0\rangle, H^2|\phi_0\rangle, H^3|\phi_0\rangle]$

A better Lanczos algorithm

 Instead of the iterative minimisation over the two-dimensional subspaces, minimise directly over the Krylov subspace

$$\mathcal{K}^{m}(\ket{\phi_{0}}) = ext{span}[\ket{\phi_{0}}, H \ket{\phi_{0}}, H^{2} \ket{\phi_{0}}, H^{3} \ket{\phi_{0}}, \cdots, H^{m} \ket{\phi_{0}}]$$

• many-more degrees of freedom \Rightarrow much better and faster convergence

Lanczos algorithm for Exact Diagonalisation in Krylov subspace

How to construct the orthonormal basis in Krylov subspace?

 $b_1 \mid b_2 \mid b_3 \mid$

Reduced Hamiltonian in the Krylov space

$$H \ket{\phi_0^{(n)}} = b_n \ket{\phi_0^{(n-1)}} + a_n \ket{\phi_0^{(n)}} + b_{n+1} \ket{\phi_0^{(n+1)}}$$

$ \phi_0 angle$	\equiv	random vector normalised		12	Ь	0	0		0	0.
$\phi_0^{(1)}\rangle$	=	$m{H} \ket{\phi_0} - m{a}_0 \ket{\phi_0}$		$\begin{pmatrix} a_0 \\ b_1 \end{pmatrix}$	D_1 a_1	bo	0		0	0
$\phi_0^{(2)}\rangle$	=	$H \ket{\phi_{0}^{(1)}} - a_{1} \ket{\phi_{0}^{(1)}} - b_{1} \ket{\phi_{0}}$		0	b_2	a ₂	b_3		0	0
$\phi_0^{(3)}\rangle$	=	$H \ket{\phi_0^{(2)}} - a_2 \ket{\phi_0^{(2)}} - b_2 \ket{\phi_0^{(1)}}$	$H_{\mathcal{K}^{L}(v_{0}\rangle)} =$	0	0	b_3	a ₃		0	0
					÷			÷.,	÷	
·.				0	0	0	0		a_{L-1}	b _L
				0/	0	0	0	•••	b_L	a_L /

- tridiagonal matrices are very easy to diagonalise: look up algorithms
- more importantnly, the dimension of the the tridiagonal matrix can be extremely small compared to the original Hilbert-space dimension
- in fact, one can progressively keep increasing the Krylov subspace dimension until all the required eigenvalues/eigenvectors have converged

Lanczos convergence for a 24 site Heisenberg chain taking into account some symmetries Sandvik's lecture notes