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Recap of Lecture 1-2

e Exact diagonalisation for spin systems
e Constructing the basis states
e Encoding them as binary strings
e Efficient ways of tabulating them so that they are easy to look up [Lin Tables]
e Implementing U(1) symmetry
e constructing the Hamiltonian
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Recap of Lecture 1-2

e Exact diagonalisation for spin systems

e Constructing the basis states

e Encoding them as binary strings

e Efficient ways of tabulating them so that they are easy to look up [Lin Tables]
e Implementing U(1) symmetry

e constructing the Hamiltonian

Sparsity of Hamiltonian matrix: representing the matrices as sparse matrices; CSR, COO formats
e Efficient sparse matrix-vector multiplication

e Lanczos algorithm for exact diagonalisation

e eigenvalues/eigenvectors near the extremities of the spectrum
e diagonalise within a truncated Krylov subspace
e useful for ground states and low excited states



Target eigenvalues/eigenvectors at arbitrary energy densities in the spectrum
e Shift-invert ED
e Polynomially filtered ED

References
e Kernel Polynomial Methods [arXiv:cond-mat/0504627v2]

e Shift-invert [arXiv:1803.05395]
e POLFED [arXiv:2005.09534]



Lanczos algorithm

XXZ chain with L = 14 in 5% = 0 sector

When does Lanczos work best?

e target eigenvalues are near the extremities of the
spectrum

e eigenvalues near the target are well separated from
each other

e density of states is very low near the target

energy

How to target eigenvalues near the middle of the
spectrum?

e not the extremities of the spectrum

e density of states very high

density of states



Transforming the Hamiltonian

Key idea:

e transform the Hamiltonian to move the target to the extremities
e transformation keeps the eigenvectors invariant

Bare spectrum Spectrum of (H — oT)?

H — (H —oT)?

energy

e target moved to extremities of spectrum

energy

e but density of states very high; Lanczos
will take very long to converge

density of states density of states



Shift-Invert Exact Diagonalisation

Key idea:
e transform the Hamiltonian to move the target to the extremities
e transformation keeps the eigenvectors invariant

Bare spectrum Spectrum of (H — o)1

H— (H—ol)™?

e target moved to extremities of spectrum

density of states also low

energy
energy

e inverting a large matrix is
computationally expensive

e Need to efficiently multiply

(H=ol)"t ) = |¢)

density of states density of states



Shift-Invert Exact Diagonalisation

e How to efficiently multiply Lower triangular matrix

1 _
(H—ol) ™" o) = [¢) e o
e Given a [¢) find the solution |¢) to the system of - by 1 .- 0
equations T : S
(H—=ol)|¢) = [¥) [ PR |

e Want to avoid inverting the matrix explicitly U tri | i
pper triangular matrix

e Key step: LU decomposition of (H — o)

Uil U2 et Ulp
(H-ol)=P-L-U 0 Uy -+ Uop
U=
e P : permutation matrix 0 0 Unn

e L : lower triangular matrix
e U : upper triangular matrix

Two steps:

e perform the LU decomposition

e solve the system of equations of the form Ax =y using the LU decomposition



LU decomposition

Gaussian elimination with partial pivoting

e Gaussian elimination: using row operations to eliminate the lower triangular part
e swapping rows of the matrix = necessitates the permutation matrix

2 1 3
AO =4 2 7
2 2 -1

Next, we perform the row operations to eliminate the coefficients below the first entry in the first column:

Stepl: R+ Ry — 2Ry
Step2: R3+ R3+R;
This yields:
1

1
0 1| and W=]2
3 2 —1

Al —

o onN
o = O

0
0
1

We repeat the process to eliminate the coefficients below the second entry in the second column:



LU decomposition

Step 3: R3+ R3 —3R»

This yields:
2 1 3 1 0 0
A®=10 0 1| and L®P@=]2 1 o0
0 0 -1 -1 -3 1
Finally, we have the upper triangular matrix U:
2 1 3
u=A®=10 0o 1
0 0 -1
And the lower triangular matrix L:
1 0
L=1@=12 1 o0



Solving a system of equations using LU decomposition

e We need to solve

Ax=y=LUx=y

e Do it in two steps

e define Ux = z and solve Lz =y
e solve Ux =z

e Since L and U are lower and upper triangular
matrices respectively, use forward and backward
substitution to solve for x

e once we solve for x we have effectively implemented

X = A_ly



Solving a system of equations using LU decomposition

e We need to solve

Ax=y=LUx=y

e Do it in two steps

e define Ux = z and solve Lz =y
e solve Ux =z

e Since L and U are lower and upper triangular
matrices respectively, use forward and backward
substitution to solve for x

e once we solve for x we have effectively implemented

X = A_ly

Solution for z using forward substitution
Z1 =y
=y —Lauz

z3=y3— L3121 — L2

Zn :y,,—Zn—anJ-ZJ
j=1

Solution for x using backward substitution

— Zn
7 Unn
Xp_1 = Zp—1 — Un—l,an
Un—l,n—l
X1 = A7 2= WY Zf:z el

U1



Summary of Shift-Invert ED

e Given a Hamiltonian H and target eigenvalue o

e Effectively do Lanczos ED on a transformed Hamiltonian
H— (H—ol)™?

o need to efficiently multiply (H — o) ™! to vectors without losing sparsity or computing the inverse explicitly

e LU decomposition of (H — o) ~*
e Use the LU to solve for (H — o) ™! |4) = |¢) and implement the inverse



Polynomially filtered ED

Key idea: Transform the Hamiltonian using kernel polynomials which
have a recursive structure

e Transformation

P()(E
X 1 &, 107 b)
H — PX(H) = 5 > g Ta(H)
n=0
where T,(x) is the nt" Chebyshev polynomial and 0.5
e the coefficients

c? = /4 — 36,0 cos(ncos ! o) 0.0 AVAVAVAV VAVAVAVA'A‘
e Coefficients obtained from expanding a Dirac-delta around centred r .
at o in Chebyshev polynomials ) —-10 -0.5 0.0 0.5 1.0

e Normalisation D ensures P;(c) =1

e the summation above can be computed efficiently using known
recursion relations for Chebyshev polynomials



