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Recap of Lecture 1-2

• Exact diagonalisation for spin systems

• Constructing the basis states

• Encoding them as binary strings

• Efficient ways of tabulating them so that they are easy to look up [Lin Tables]

• Implementing U(1) symmetry

• constructing the Hamiltonian

• Sparsity of Hamiltonian matrix: representing the matrices as sparse matrices; CSR, COO formats

• Efficient sparse matrix-vector multiplication

• Lanczos algorithm for exact diagonalisation

• eigenvalues/eigenvectors near the extremities of the spectrum

• diagonalise within a truncated Krylov subspace

• useful for ground states and low excited states
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This Lecture

Target eigenvalues/eigenvectors at arbitrary energy densities in the spectrum

• Shift-invert ED

• Polynomially filtered ED

References

• Kernel Polynomial Methods [arXiv:cond-mat/0504627v2]

• Shift-invert [arXiv:1803.05395]

• POLFED [arXiv:2005.09534]

3



Lanczos algorithm

When does Lanczos work best?

• target eigenvalues are near the extremities of the

spectrum

• eigenvalues near the target are well separated from

each other

• density of states is very low near the target

How to target eigenvalues near the middle of the

spectrum?

• not the extremities of the spectrum

• density of states very high

XXZ chain with L = 14 in Sz = 0 sector

density of states

en
er

gy
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Transforming the Hamiltonian

Key idea:

• transform the Hamiltonian to move the target to the extremities

• transformation keeps the eigenvectors invariant

Bare spectrum

density of states

en
er

gy

Spectrum of (H − σI)2

density of states

en
er

gy

H → (H − σI)2

• target moved to extremities of spectrum

• but density of states very high; Lanczos

will take very long to converge
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Shift-Invert Exact Diagonalisation

Key idea:

• transform the Hamiltonian to move the target to the extremities

• transformation keeps the eigenvectors invariant

Bare spectrum

density of states

en
er

gy

Spectrum of (H − σI)−1

density of states

en
er

gy

H → (H − σI)−1

• target moved to extremities of spectrum

• density of states also low

• inverting a large matrix is

computationally expensive

• Need to efficiently multiply

(H − σI)−1 |ψ⟩ = |ϕ⟩
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Shift-Invert Exact Diagonalisation

• How to efficiently multiply

(H − σI)−1 |ψ⟩ = |ϕ⟩

• Given a |ψ⟩ find the solution |ϕ⟩ to the system of

equations

(H − σI) |ϕ⟩ = |ψ⟩

• Want to avoid inverting the matrix explicitly

• Key step: LU decomposition of (H − σI)

(H − σI) = P · L · U

• P : permutation matrix

• L : lower triangular matrix

• U : upper triangular matrix

Lower triangular matrix

L =


1 0 · · · 0

l21 1 · · · 0
...

...
. . .

...

ln1 ln2 · · · 1


Upper triangular matrix

U =


u11 u12 · · · u1n
0 u22 · · · u2n
...

...
. . .

...

0 0 · · · unn



Two steps:

• perform the LU decomposition

• solve the system of equations of the form Ax = y using the LU decomposition
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LU decomposition

Gaussian elimination with partial pivoting

• Gaussian elimination: using row operations to eliminate the lower triangular part

• swapping rows of the matrix ⇒ necessitates the permutation matrix

A(0) =

 2 1 3

4 2 7

−2 2 −1


Next, we perform the row operations to eliminate the coefficients below the first entry in the first column:

Step 1: R2 ← R2 − 2R1

Step 2: R3 ← R3 + R1

This yields:

A(1) =

2 1 3

0 0 1

0 3 2

 and L(1) =

 1 0 0

2 1 0

−1 0 1


We repeat the process to eliminate the coefficients below the second entry in the second column:
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LU decomposition

Step 3: R3 ← R3 − 3R2

This yields:

A(2) =

2 1 3

0 0 1

0 0 −1

 and L(2) =

 1 0 0

2 1 0

−1 −3 1


Finally, we have the upper triangular matrix U:

U = A(2) =

2 1 3

0 0 1

0 0 −1


And the lower triangular matrix L:

L = L(2) =

 1 0 0

2 1 0

−1 −3 1


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Solving a system of equations using LU decomposition

• We need to solve

Ax = y⇒ L U x = y

• Do it in two steps

• define Ux = z and solve Lz = y

• solve Ux = z

• Since L and U are lower and upper triangular

matrices respectively, use forward and backward

substitution to solve for x

• once we solve for x we have effectively implemented

x = A−1y

Solution for z using forward substitution

z1 = y1

z2 = y2 − L21z1

z3 = y3 − L31z1 − L32z2

. . .
. . .

zn = yn −
∑
j=1

n − 1Lnjzj

Solution for x using backward substitution

xn =
zn

Unn

xn−1 =
zn−1 − Un−1,nxn

Un−1,n−1

. . .
. . .

x1 =
z1 −

∑n
j=2 U1jxj

U11
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Summary of Shift-Invert ED

• Given a Hamiltonian H and target eigenvalue σ

• Effectively do Lanczos ED on a transformed Hamiltonian

H → (H − σI)−1

• need to efficiently multiply (H −σI)−1 to vectors without losing sparsity or computing the inverse explicitly

• LU decomposition of (H − σI)−1

• Use the LU to solve for (H − σI)−1 |ψ⟩ = |ϕ⟩ and implement the inverse
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Polynomially filtered ED

Key idea: Transform the Hamiltonian using kernel polynomials which

have a recursive structure

• Transformation

H → PK
σ (H) =

1

D

K∑
n=0

cσn Tn(H)

where Tn(x) is the nth Chebyshev polynomial and

• the coefficients

cσn =
√

4− 3δn0 cos(n cos
−1 σ)

• Coefficients obtained from expanding a Dirac-delta around centred

at σ in Chebyshev polynomials

• Normalisation D ensures Pσ(σ) = 1

• the summation above can be computed efficiently using known

recursion relations for Chebyshev polynomials
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