Computational Methods for Quantum Many-Body Physics

Sthitadhi Roy ${ }^{1}$ and Arnab Sen ${ }^{2}$
June 3, 2023
${ }^{1}$ ICTS-TIFR, Bengaluru
${ }^{2}$ IACS, Kolkata

Lecture 3

Recap of Lecture 1-2

- Exact diagonalisation for spin systems
- Constructing the basis states
- Encoding them as binary strings
- Efficient ways of tabulating them so that they are easy to look up [Lin Tables]
- Implementing $U(1)$ symmetry
- constructing the Hamiltonian
- Exact diagonalisation for spin systems
- Constructing the basis states
- Encoding them as binary strings
- Efficient ways of tabulating them so that they are easy to look up [Lin Tables]
- Implementing $U(1)$ symmetry
- constructing the Hamiltonian
- Sparsity of Hamiltonian matrix: representing the matrices as sparse matrices; CSR, COO formats
- Efficient sparse matrix-vector multiplication
- Exact diagonalisation for spin systems
- Constructing the basis states
- Encoding them as binary strings
- Efficient ways of tabulating them so that they are easy to look up [Lin Tables]
- Implementing $U(1)$ symmetry
- constructing the Hamiltonian
- Sparsity of Hamiltonian matrix: representing the matrices as sparse matrices; CSR, COO formats
- Efficient sparse matrix-vector multiplication
- Lanczos algorithm for exact diagonalisation
- eigenvalues/eigenvectors near the extremities of the spectrum
- diagonalise within a truncated Krylov subspace
- useful for ground states and low excited states

Target eigenvalues/eigenvectors at arbitrary energy densities in the spectrum

- Shift-invert ED
- Polynomially filtered ED

References

- Kernel Polynomial Methods [arXiv:cond-mat/0504627v2]
- Shift-invert [arXiv:1803.05395]
- POLFED [arXiv:2005.09534]

Lanczos algorithm

When does Lanczos work best?

- target eigenvalues are near the extremities of the spectrum
- eigenvalues near the target are well separated from each other
- density of states is very low near the target

How to target eigenvalues near the middle of the spectrum?

- not the extremities of the spectrum
- density of states very high

$X X Z$ chain with $L=14$ in $S^{z}=0$ sector

Transforming the Hamiltonian

Key idea:

- transform the Hamiltonian to move the target to the extremities
- transformation keeps the eigenvectors invariant

density of states

$$
H \rightarrow(H-\sigma \mathbb{I})^{2}
$$

- target moved to extremities of spectrum
- but density of states very high; Lanczos will take very long to converge

Shift-Invert Exact Diagonalisation

Key idea:

- transform the Hamiltonian to move the target to the extremities
- transformation keeps the eigenvectors invariant

$$
H \rightarrow(H-\sigma \mathbb{I})^{-1}
$$

- target moved to extremities of spectrum
- density of states also low
- inverting a large matrix is computationally expensive
- Need to efficiently multiply

$$
(H-\sigma \mathbb{I})^{-1}|\psi\rangle=|\phi\rangle
$$

density of states

Shift-Invert Exact Diagonalisation

- How to efficiently multiply

$$
(H-\sigma \mathbb{I})^{-1}|\psi\rangle=|\phi\rangle
$$

- Given a $|\psi\rangle$ find the solution $|\phi\rangle$ to the system of equations

$$
(H-\sigma \mathbb{I})|\phi\rangle=|\psi\rangle
$$

- Want to avoid inverting the matrix explicitly
- Key step: LU decomposition of $(H-\sigma \mathbb{I})$

$$
(H-\sigma \mathbb{I})=\mathrm{P} \cdot \mathrm{~L} \cdot \mathrm{U}
$$

- P : permutation matrix
- L: lower triangular matrix
- U : upper triangular matrix

Two steps:

- perform the LU decomposition
- solve the system of equations of the form $A \mathbf{x}=\mathbf{y}$ using the LU decomposition

LU decomposition

Gaussian elimination with partial pivoting

- Gaussian elimination: using row operations to eliminate the lower triangular part
- swapping rows of the matrix \Rightarrow necessitates the permutation matrix

$$
A^{(0)}=\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & 2 & 7 \\
-2 & 2 & -1
\end{array}\right]
$$

Next, we perform the row operations to eliminate the coefficients below the first entry in the first column:

$$
\begin{array}{ll}
\text { Step 1: } & R_{2} \leftarrow R_{2}-2 R_{1} \\
\text { Step 2: } & R_{3} \leftarrow R_{3}+R_{1}
\end{array}
$$

This yields:

$$
A^{(1)}=\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 0 & 1 \\
0 & 3 & 2
\end{array}\right] \quad \text { and } \quad L^{(1)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

We repeat the process to eliminate the coefficients below the second entry in the second column:

$$
\text { Step 3: } \quad R_{3} \leftarrow R_{3}-3 R_{2}
$$

This yields:

$$
A^{(2)}=\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right] \quad \text { and } \quad L^{(2)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -3 & 1
\end{array}\right]
$$

Finally, we have the upper triangular matrix U :

$$
U=A^{(2)}=\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

And the lower triangular matrix L :

$$
L=L^{(2)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -3 & 1
\end{array}\right]
$$

Solving a system of equations using LU decomposition

- We need to solve

$$
A \mathbf{x}=\mathbf{y} \Rightarrow L U \mathbf{x}=\mathbf{y}
$$

- Do it in two steps
- define $U x=z$ and solve $L z=y$
- solve $U x=z$
- Since L and U are lower and upper triangular matrices respectively, use forward and backward substitution to solve for x
- once we solve for x we have effectively implemented

$$
\mathbf{x}=A^{-1} \mathbf{y}
$$

Solving a system of equations using LU decomposition

Solution for z using forward substitution

- We need to solve

$$
A \mathbf{x}=\mathbf{y} \Rightarrow L U \mathbf{x}=\mathbf{y}
$$

- Do it in two steps
- define $U x=z$ and solve $L z=y$
- solve $U x=z$
- Since L and U are lower and upper triangular matrices respectively, use forward and backward substitution to solve for x
- once we solve for x we have effectively implemented

$$
\mathbf{x}=A^{-1} \mathbf{y}
$$

$$
\begin{aligned}
& z_{1}=y_{1} \\
& z_{2}=y_{2}-L_{21} z_{1} \\
& z_{3}=y_{3}-L_{31} z_{1}-L_{32} z_{2}
\end{aligned}
$$

$$
\ddots \ddots
$$

$$
z_{n}=y_{n}-\sum_{j=1} n-1 L_{n j} z_{j}
$$

Solution for x using backward substitution

$$
\begin{aligned}
& x_{n}=\frac{z_{n}}{U_{n n}} \\
& x_{n-1}=\frac{z_{n-1}-U_{n-1, n} x_{n}}{U_{n-1, n-1}} \\
& \ddots \ddots \\
& x_{1}=\frac{z_{1}-\sum_{j=2}^{n} U_{1 j} x_{j}}{U_{11}}
\end{aligned}
$$

- Given a Hamiltonian H and target eigenvalue σ
- Effectively do Lanczos ED on a transformed Hamiltonian

$$
H \rightarrow(H-\sigma \mathbb{I})^{-1}
$$

- need to efficiently multiply $(H-\sigma \mathbb{I})^{-1}$ to vectors without losing sparsity or computing the inverse explicitly
- LU decomposition of $(H-\sigma \mathbb{I})^{-1}$
- Use the LU to solve for $(H-\sigma \mathbb{I})^{-1}|\psi\rangle=|\phi\rangle$ and implement the inverse

Polynomially filtered ED

Key idea: Transform the Hamiltonian using kernel polynomials which

have a recursive structure

- Transformation

$$
H \rightarrow P_{\sigma}^{K}(H)=\frac{1}{D} \sum_{n=0}^{K} c_{n}^{\sigma} T_{n}(H)
$$

where $T_{n}(x)$ is the $n^{\text {th }}$ Chebyshev polynomial and

- the coefficients

$$
c_{n}^{\sigma}=\sqrt{4-3 \delta_{n 0}} \cos \left(n \cos ^{-1} \sigma\right)
$$

- Coefficients obtained from expanding a Dirac-delta around centred at σ in Chebyshev polynomials
- Normalisation D ensures $P_{\sigma}(\sigma)=1$

- the summation above can be computed efficiently using known recursion relations for Chebyshev polynomials

