

Magnetization time series generated in Metropolis MC on $L \times L$ lattices with L = 8 (top panel) and L = 16 (botton panel) at T = 2.2 ($T_c \approx 2.269$). The starting configuration is fully polarized. Figure from Sandvik, arXiv: 1101.3281v1

< 🗇 🕨

Data collapse of magnetic susceptibility per spin using the exact values of exponents $\gamma = 7/4$, $\nu = 1$ and exact T_c for the 2D Ising model. Figure from Sandvik, arXiv: 1101.3281v1

イロト イポト イヨト イヨト

Behaviour of the Binder cumulant U_2 for finite sizes for the 2D Ising model. Figure from Sandvik, arXiv: 1101.3281v1

イロト イポト イヨト イヨト

3

Behaviour of ξ/L for finite sizes for the 2D Ising model. Figure from Sandvik, arXiv: 1101.3281v1

프 🕨 🗆 프

A D > A P > A

Scaling collapse of the above data gives $T_c = 2.26921(2)$, $\nu = 0.9985(11)$, $\gamma = 1.750(02)$. Figure from Sandvik, arXiv: 1101.3281v1

イロト イポト イヨト イヨト

э

One Wolff cluster flip for a lattice of dimension 100×100 at $0.97\beta_c$ for 2D Ising model. Figure from "Monte Carlo simulations of spin systems" by W. Janke

Arnab Sen, IACS, Kolkata

Snapshot from a worm algorithm for the 2D Ising model for a 64×64 lattice at $\beta = \beta_c$. Figure from Wolff, arXiv: 0808.3934v2