Class Timings: Mondays 9:00 -11:00 AM and Thursdays 11:30-1:00 PM
Course Syllabus: The syllabus will be understanding the proof and theorems of the papers listed below:
[1] Alexander Drewitz, Jürgen Gärtner, Alejandro F. Ramírez, and Rongfeng Sun. “Survival prob- ability of a random walk among a Poisson system of moving traps”. In: Probability in complex physical systems. Vol. 11. Springer Proc. Math. Springer, Heidelberg, 2012, pp. 119–158. isbn: 978-3-642-23811-6; 978-3-642-23810-9. doi: 10.1007/978-3-642-23811-6\_6. url: https: //doi.org/10.1007/978-3-642-23
[2] Komorowski, Tomasz. "Brownian motion in a Poisson obstacle field." ASTERISQUE-SOCIETE MATHEMATIQUE DE FRANCE 266 (2000): 91-112.
Course Outcome: Will get a broad overview of the models concerning Random walk in Traps.
Prerequisite: Undergraduate Probability course and Undergraduate Advanced Calculus/Real Analysis course. Measure Theory course will be helpful but not essential.
- Teacher: Siva Athreya